教育经历:
2012年-2016年, 福州大学数学与计算机科学学院, 学士
2016年-2021年, 中国科学院数学与系统科学研究院,硕士&博士
工作经历:
2021-至今,厦门大学副教授
研究方向:
主要从事非线性泛函分析理论与方法的研究,重点探索其在流体力学数学理论中的应用,尤其关注涡动力学相关的偏微分方程问题。
论文:
[24] Cao Daomin; Wei Juncheng; Zhan Weicheng: Symmetry in Serrin-type overdetermined problems, Preprint.
[23] Fan Boquan; Wang Yuchen; Zhan Weicheng: Remarks on radial symmetry of stationary and uniformly-rotating solutions for the 2D Euler equation, Preprint.
[22] Fan Boquan; Wang Yuchen; Zhan Weicheng: Radial symmetry of stationary and uniformly-rotating solutions to the 2D Euler equation in a disc, arXiv:2412.05973.
[21] Cao Daomin; Fan Boquan; Zhan Weicheng: Free boundary problems for the two-dimensional Euler equations in exterior domains, arXiv:2406.16134.
[20] Wang Yuchen; Zhan Weicheng: On the rigidity of the 2D incompressible Euler equations, arXiv:2307.00197.
[19] Cao Daomin; Lai Shanfa; Qin Guolin; Zhan Weicheng; Zou Changjun: Uniqueness and stability of steady vortex rings for 3D incompressible Euler equation, arXiv:2206.10165.
[18] Cao Daomin; Qin Guolin; Yu Weilin; Zhan Weicheng; Zou Changjun: Existence, uniqueness and stability of steady vortex rings of small cross-section, arXiv:2201.08232.
[17] Cao Daomin; Zhan Weicheng: On the steady axisymmetric vortex rings for 3-D incompressible Euler flows, arXiv:2009.13210.
[16] Cao Daomin; Qin Guolin; Zhan Weicheng; Zou Changjun: Uniqueness and stability of traveling vortex pairs for the incompressible Euler equation, Ann. PDE, 2025, 11, no. 1, Paper No. 1, 55 pp.
[15] Cao Daomin; Qin Guolin; Zhan Weicheng; Zou Changjun: Kármán vortex street for the generalized surface quasi-geostrophic equation, Calc. Var. Partial Differential Equations, 2023, 62, no. 6, Paper No. 168, 35 pp.
[14] Cao Daomin; Qin Guolin; Zhan Weicheng; Zou Changjun: Remarks on orbital stability of steady vortex rings, Trans. Amer. Math. Soc., 2023, 376, no. 5: 3377-3395.
[13] Cao Daomin; Qin Guolin; Zhan Weicheng; Zou Changjun: Existence and stability of smooth traveling circular pairs for the generalized surface quasi-geostrophic equation, Int. Math. Res. Not. IMRN, 2023, no. 6: 4761-4804.
[12] Cao Daomin; Qin Guolin; Zhan Weicheng; Zou Changjun: Global solutions for the generalized SQG equation and rearrangements, Trans. Amer. Math. Soc., 2023, 376, no. 3: 2181-2211.
[11] Cao Daomin; Qin Guolin; Zhan Weicheng; Zou Changjun: Existence of traveling asymmetric vortex pairs in an ideal fluid, J. Differential Equations, 2023, 351: 131-155.
[10] Cao Daomin; Wan Jie; Wang Guodong; Zhan Weicheng: Asymptotic behaviour of global vortex rings, Nonlinearity, 2022, 35, no. 7: 3680-3705.
[9] Cao Daomin; Qin Guolin; Zhan Weicheng; Zou Changjun: On the global classical solutions for the generalized SQG equation, J. Funct. Anal., 2022, 283, no. 2, Paper No. 109503, 37 pp.
[8] Cao Daomin; Zhan Weicheng; Zou Changjun: On desingularization of steady vortex for the lake equations, IMA J. Appl. Math., 2022, 87, no. 1: 50-79.
[7] Cao Daomin; Qin Guolin; Zhan Weicheng; Zou Changjun: Existence and regularity of co-rotating and traveling-wave vortex solutions for the generalized SQG equation, J. Differential Equations, 2021, 299: 429-462.
[6] Cao Daomin; Lai Shanfa; Zhan Weicheng: Traveling vortex pairs for 2D incompressible Euler equations, Calc. Var. Partial Differential Equations, 2021, 60, no. 5, Paper No.190, 16 pp.
[5] Cao Daomin; Wang Guodong; Zhan Weicheng: Steady vortex patches near a nontrivial irrotational flow, Sci. China Math., 2021, 64(5): 947-962.
[4] Cao Daomin; Wan Jie; Wang Guodong; Zhan Weicheng: Rotating vortex patches for the planar Euler equations in a disk, J. Differential Equations, 2021, 275: 509-532.
[3] Cao Daomin; Wan Jie; Zhan Weicheng: Desingularization of vortex rings in 3 dimensional Euler flows, J. Differential Equations, 2021, 270: 1258-1297.
[2] Jiang Fei; Jiang Song; Zhan Weicheng: Instability of the abstract Rayleigh-Taylor problem and applications, Math. Models Methods Appl. Sci., 2020, 30, no.12: 2299-2388.
[1] Cao Daomin; Wang Guodong; Zhan Weicheng: Desingularization of vortices for two-dimensional steady Euler flows via the vorticity method, SIAM J. Math. Anal., 2020, 52, no.6: 5363-5388.