学术报告
所在位置 网站首页 > 学术科研 > 学术报告 > 正文
【学术报告】Optimal decay rates of strong solution to the 3D isentropic compressible Navier-Stokes equations
编辑:刘梦洁发布时间:2025年09月02日

人:于海波(华侨大学)

   间:20259410:00

   点:海韵园实验楼S102

内容摘要:

This paper concerns the optimal time-decay rates of the 3D isentropic compressible Navier-Stokes equations. In the case when the initial energy is small, the asymptotic behavior with optimal decay rates of global strong solutions is studied under the condition that $L^p$-norm of the initial perturbation is bounded for $1\leq p<2$. In order to derive energy-dissipation of global solutions, we introduce a new equation for the gradient of density by combining the gradient of mass equation and the momentum equations. This enables us to derive some preliminary time-decay rates (not necessarily optimal), which, together with the Duhamel's principle, leads to the desired optimal decay rates. Compared with the previous results, the Sobolev norms of spatial derivatives of initial data can be arbitrarily large.

个人简介:

于海波,华侨大学副教授,主要从事流体力学中的非线性偏微分方程理论研究,在NonlinearityJournal of Differential EquationsJournal of Evolution Equations等国内外期刊上发表20多篇论文,主持多项国家级和省部级科研项目。


联系人:张剑文