教授
所在位置 网站首页 > 师资队伍 > 专任教师 > 教授 > 正文
丁昌明

职称:教授

职务:

学历:博士

电子邮件:cding a xmu.edu.cn

联系电话:2580678

办 公 室:物机楼643

研究方向:

Dynamical Systems

所授课程:

微积分I (114人)、概率论 (112人)、微积分IV (110人)

获奖:

教育部自然科学奖二等奖:不连续系统的渐近行为与镇定性的研究,2017年

英文专著:《Stabilities in Dynamical Systems》, 科学出版社, 2008年


论文:

1. Chain prolongation and chain stability, Nonlinear Analysis,  2008.

2. Near Periodicity and Zhukovskij Stability, Publi. Math., 2008.

3. Intertwined Basins of Attraction in Planar Systems, Inter. J. Bifur. Chaos, 2009.

4. Chain Stability of Closed sets, Houston J. Math., 2010.

5. Intertwined Basins of Attraction, IJBC, 2012.

6. Two characteristics of planar intertwined basins of attraction,Chaos, Solitons & Fractals, 2012.

7. On the Limit Set Maps in Semidynamical Systems, Georgian Math. J., 2012

8. Lyapunov Quasi-stable Trajectories, Fund. Math., 220 (2013), 139-154.

9. Limit Set Maps in Impulsive Semidynamical Systems, J. Dynam. Control Sys. 2014.

10. Limit sets in impulsive semidynamical systems, Topol. Meth. Nonlinear Anal., 43(2014), 97-115.

11. A predator-prey model with state dependent impulsive effects, Ann. Polon. Math., 111(3), 2014, 297-308.

12. A predator-prey model of Holling-type II with state dependent impulsive effects, Topol. Meth. Nonlinear Anal., 46(2015), 247-259.

13. Recurrence and LaSalle invarience principle, Systems & Control Letters, 93(2016), 64-68.

14. Prolongational centers and their depths, Fund. Math., 234 (2016), 287-296.

15. Poincare Recurrence Theorem in Impulsive Systems, Topol. Meth. Nonlinear Anal., 49(2017), 577-585.

16. Zhukovskij Quasi-stable Orbits of Impulsive Dynamical Systems, Qualitative Theory. Dyna. Sys. 16(2017), 635-643.

17. Generalized Recurrence in Impulsive Semidynamical Systems, Topol. Meth. Nonlinear Anal., 50(2017), 217-229.

18. The Index of Impulsive Periodic Orbits, Nonlinear Analysis,  192(2020).

19. Bendixson criterion in impulsive systems, Math. Methods Appl. Sci.,  2020.