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Abstract

In this paper, we study the semidefinite inverse eigenvalue problem of reconstructing a real
n-by-n matrix C such that it is nearest to the original pre-estimated real n-by-n matrix Co in
the Frobenius norm and satisfies the measured partial eigendata, where the required matrix C
should preserve the symmetry, positive semidefiniteness, and the prescribed entries of the pre-
estimated matrix Co. We propose the alternating direction method of multipliers for solving
the semidefinite inverse eigenvalue problem, where three related iterative algorithms are
presented. We also extend our method to the case of lower bounds. Numerical experiments
are reported to illustrate the efficiency of the proposed method for solving semidefinite inverse
problems.

Keywords. Inverse eigenvalue problem, positive semidefiniteness, prescribed entries, alter-
nating direction method of multipliers.
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1 Introduction

We consider the following semidefinite inverse eigenvalue problem with prescribed entries and
partial eigendata:

PESDIEP Given a pre-estimated real symmetric and positive definite matrix Co ∈ Rn×n and
a set of measured eigendata {(λk,xk) ∈ R × Rn}pk=1(p � n), find a matrix C ∈ Rn×n such
that it is closest to the original matrix Co in the Frobenius norm, satisfies the measured eigen-
data {(λk,xk)}pk=1, and retains the symmetry, positive semidefiniteness and prescribed entries
{(Co)ij | (i, j) ∈ Is} of the pre-estimated matrix Co, where Is ⊂ N := {(i, j) | i, j = 1, . . . , n} is
a given index subset such that (j, i) ∈ Is if (i, j) ∈ Is.

The PESDIEP is a kind of structured inverse eigenvalue problems, which arise in many
applications such that structural dynamics, vibrations, control design, circuit theory, inverse
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Sturm-Liouville problems, applied physics, finite element model updating, etc. For the applica-
tions, mathematical theory, and numerical methods on structured inverse eigenvalue problems,
one may refer to, for instance, the survey papers [16, 19] and the books [20, 28, 32, 55] and the
references therein.

The PESDIEP plays an important role in many applications such as the finite element model
updating in structural dynamics and vibration [7, 8, 20, 28, 32]. In practice, the pre-estimated
analytic matrix Co is a physical matrix whose entries involves some physical parameters such
as mass, stiffness, length, elasticity, inductance, capacitance, etc. In general, the physical an-
alytical matrix Co possesses some specific structural constraints (e.g., symmetry, definiteness,
sparsity or bandedness). However, the natural frequencies and mode shapes (i.e., eigenvalues
of eigenvectors) predicted by the analytic matrix Co often do not match with experimentally
measured frequencies and mode shapes. To ensure the validity of the original model, one may
update or correct the original analytic matrix Co via the prescribed partial eigendata, which
can be experimentally measured from a practical structure. It is desired to update the original
matrix Co with minimal changes. This requires that the updated matrix C should be closest to
the original analytic matrix Co, say, in the Frobenius norm and satisfies the measured eigendata.
More importantly, the updated matrix C should preserve various structural constraints of Co
simultaneously. That is, the corrected matrix C should keep the symmetry, definiteness, and
sparsity (i.e., prescribed entries) of the analytic matrices Co unchanged.

Let
Λ = diag(λ1, . . . , λp) ∈ Rp×p, X = [x1, . . . ,xp] ∈ Rn×p.

Then, the PESDIEP is to solve the following minimization problem.

min
1

2
‖C − Co‖2

subject to (s.t.) CX = XΛ,

Cij = (Co)ij ∀(i, j) ∈ Is,

C ∈ Sn+,

(1)

where ‖ · ‖ denotes the Frobenius matrix norm or the Euclidean vector norm and Sn and Sn+
denote the set of all n × n real symmetric matrices and the set of all n × n real symmetric
and positive semidefinite matices, respectively. Without causing any confusion, we regard the
minimization problem (1) as the PESDIEP.

As noted in [43], one may find a solution to the PESDIEP (1) by using classical semidefinite
programming (SDP) techniques (see for instance [1, 2, 53]). However, the primal-dual interior-
point methods may not be effective for solving large-scale semidefinite programming problems
[53]. In many applications, the problem size of the PESDIEP is very large (say, n ≥ 1, 000).
In this case, the number np of linear constraints in the PESDIEP (1) is much large even when
the number p of given eigenpairs is small (e.g., when n ≥ 1, 000 and p = 30, np ≥ 30, 000).
By dropping the requirement of partial entries (i.e., Cij = (Co)ij ∀(i, j) ∈ Is), one may solve
the simplified version of PESDIEP (1) by the semismooth Newton method proposed in [4, 48].
But the requirement of prescribed entries is vital for practical applications, e.g., it is essential
to preserve the sparsity of the original physical matrix Co. In this case, the number |Is| of
prescribed entries is very large.
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Recently, the alternating direction method of multipliers (ADMM), which is proposed by
Glowinski and Marrocco [33], has been used in many areas: optimization, image processing and
statistical learning, etc. One may refer to the survey paper [12] and references therein for the
applications of the ADMM. In this paper, we propose several iterative algorithms based on the
ADMM for solving the PESDIEP. This is motivated by the recent papers due to He, Xu, and
Yuan [37] and Zhao, Bai, and Chen [57]. In [37], He, Xu, and Yuan introduced an ADMM
for solving large-scale semidefinite programming. In [57], the ADMM is successfully applied to
nonnegative inverse eigenvalue problems with partial eigendata. We shall present three ADMM-
based iterative algorithms for solving the PESDIEP by adding two auxiliary matrix variables
so that the resulted two subproblems can be handled easily, where one of the subproblems has
closed-form solution and the other is a quadratic minimization problem which can be solved
efficiently by solving its dual problem. We also extend the proposed method to the case of
lower bounds. We report some numerical tests, including the comparison with the interior-point
approach mentioned in [43, 53] for solving the PESDIEP, to illustrate the effectiveness of our
method.

Throughout the paper, we use the following notations. The symbol AT denotes the transpose
of a matrix A. I is the identity matrix of an appropriate dimension. Let ‖ · ‖max denote the
entry of largest absolute value of a matrix. Let D ⊆ Rn×n (or Sn) be a closed convex set and
ΠD{·} denote the metric projection onto D.

The remainder of the paper is organized as follows. In section 2 we propose several ADMM-
based iterative algorithms for solving the PESDIEP. In section 3 we discuss some extensions. In
section 4 we report some numerical tests.

2 An Alternating Direction Method of Multipliers

2.1 Problem reformulation

Let Sn be equipped with the Frobenius inner product

〈A,B〉 = tr(AB) ∀A,B ∈ Sn,

where “tr” means the trace of a matrix. To apply the ADMM to the PESDIEP, one possible
way is to rewrite the PESDIEP (1) as the following form

min
1

2
‖C − Co‖2 +

1

2
‖Y − Co‖2

s.t. C − Y = 0,

C ∈ Sn+, Y ∈ SB,

(2)

where SB := {Y ∈ Sn | Y X = XΛ, Yij = (Co)ij ∀(i, j) ∈ Is}.
The augmented Lagrangian function for Problem (2) is given by [39, 47]

ALβ(C, Y, Z) =
1

2
‖C − Co‖2 +

1

2
‖Y − Co‖2 − 〈Z,C − Y 〉+

β

2
‖C − Y ‖2,
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where β > 0 is a penalty parameter and Z ∈ Sn is the Lagrange multiplier. Then, the classical
method of multipliers for Problem (2) can be written as [10, 39, 47] (Ck+1, Y k+1) = argmin

C∈Sn+, Y ∈SB
ALβ(C, Y, Zk),

Zk+1 = Zk − β(Ck+1 − Y k+1),

where (Ck, Y k, Zk) is the current iterate. We observe that Problem (2) involves an objective
function, which can be separated into two individual convex functions with the matrix variable
C and the matrix variable Y , respectively. Hence, we get the following ADMM [30, 33]

Ck+1 = argmin
C∈Sn+

ALβ(C, Y k, Zk),

Y k+1 = argmin
Y ∈SB

ALβ(Ck+1, Y, Zk),

Zk+1 = Zk − β(Ck+1 − Y k+1),

(3)

where (Ck, Y k, Zk) is the current iterate.

2.2 Subproblems

We note that there are two minimization subproblems in Problem (3). By simple calculation,
we know that these subproblems have the following closed-form analytical solutions.{

Ck+1 = ΠSn+
{

1
1+β (Co + Zk + βY k)

}
,

Y k+1 = ΠSB

{
1

1+β (Co − Zk + βCk+1)
}
.

For any given V ∈ Sn, ΠSn+(V ) has explicit formula if the spectral decomposition of V are
computed [4, 40]. In particular, let the spectral decomposition of V be given by [36]

V = QΘQT , Θ = diag(θ1, . . . , θn),

where θ1, . . . , θn are eigenvalues of V and Q ∈ Rn×n is an orthogonal matrix, whose columns are
orthonormal eigenvectors of V . Then, ΠSn+(V ) admits the following explicit analytic formula
(e.g., [4, 40])

ΠSn+(V ) = QΘ+Q
T , Θ+ = diag(max{θ1, 0}, . . . ,max{θn, 0}).

In our numerical experiments, we use the efficient Matlab Mex interface1 for spectral decompo-
sition.

Next, we consider how to compute ΠSB (V ) for a given V ∈ Sn. In fact, ΠSB (V ) is the unique
solution of the following quadratic programming:

min
Y ∈Sn

1

2
‖Y − V ‖2

s.t. Y X = XΛ,

Yij = (Co)ij ∀(i, j) ∈ Is.

(4)

1which computes the spectral decomposition via a divide-and-conquer routine (dgesdd) implemented in LA-
PACK, and its code can be downdloaded at: http://videoprocessing.ucsd.edu/~karl/software.html.
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There are many existing methods in the literature for solving Problem (4) (see for instance [45]).
Here, we solve Problem (4) as follows. Let Js := N\Is. Define Îs := {(i, j) | (i, j) ∈ Is, i ≤ j}
and Ĵs := {(i, j) | (i, j) ∈ Js, i ≤ j}. For a matrix A ∈ Sn, let AÎs denote the column vector

with entries Aij for all (i, j) ∈ Îs. Define the linear operator P : R|Îs| → Sn by

Pij(AÎs) :=


Aij if (i, j) ∈ Îs,
Aji if (j, i) ∈ Îs,
0 otherwise.

It follows easily that Y ∈ Sn is a solution to Problem (4) if and only if Y Îs = (Co)Îs and

Y Ĵs ∈ R|Ĵs| solve the following minimization problem:

min
YĴs∈R

|Ĵs|

1

2

∥∥YĴs − VĴs∥∥2
s.t. H(YĴs) := P (YĴs)X = XΛ− P

(
(Co)Îs

)
X ≡ G.

(5)

Now, we present a dual method for solving Problem (5) (see for instance [45]). Let

R(H) :=
{
H(YĴs) | YĴs ∈ R|Ĵs|

}
.

Then the linear operator H : R|Ĵs| → R(H) is surjective. The Lagrangian function L : R|Ĵs| ×
R(H)→ R for Problem (5) is given by

L(YĴs ,W ) =
1

2

∥∥YĴs − VĴs∥∥2 − 〈H(YĴs)−G,W 〉.

The Lagrangian dual function Φ : R(H)→ R is defined as

Φ(W ) := inf
YĴs∈R

|Ĵs|
L(YĴs ,W ).

Since L(YĴs ,W ) is a convex quadratic function of YĴs , one may get the minimum value of L in
terms of YĴs by using the optimality condition

∇YĴsL(YĴs ,W ) = YĴs − VĴs −H
∗(W ) = 0, (6)

where the adjoint H∗ : R(H)→ R|Ĵs| of H is given by

H∗(W ) :=
1

2
(WXT +XW T )Ĵs ∀W ∈ R(H).

Thus, the Lagrangian dual function is given by

Φ(W ) =
1

2
‖H∗(W )‖2 − 〈H(VĴs +H∗(W ))−G,W 〉

=
1

2
‖H∗(W )‖2 − 〈VĴs +H∗(W ), H∗(W )〉+ 〈G,W 〉

= −1

2
‖H∗(W )‖2 − 〈VĴs , H

∗(W )〉+ 〈G,W 〉

= −1

2

∥∥VĴs +H∗(W )
∥∥2 + 〈G,W 〉+

1

2

∥∥VĴs∥∥2.
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Hence, the Lagrangian dual problem is given by

max
W∈R(H)

Φ(W ) (7)

or

min
W∈R(H)

Ψ(W ) :=
1

2

∥∥VĴs +H∗(W )
∥∥2 − 〈G,W 〉 − 1

2

∥∥VĴs∥∥2. (8)

We note that 0 ∈ R(H), Slater’s condition (see for instance [13, §5.2.3]) holds for Problem (5).
By using [49, Theorems 17 and 18], there exists a solution W ∈ R(H) to the dual problem (7)
(or Problem (8)) such that Φ(W ) is equal to the optimal value of the dual problem (7) and is
also equal to the optimal value of the original problem (5). That is, the optimal duality gap
is zero. Once a solution W ∈ R(H) to the dual problem (7) is computed, by (6), the unique
solution to the original problem (5) is given by

Y Ĵs = VĴs +H∗(W ).

Therefore, we only need to solve the dual problem (7), i.e., Problem (8). A solution W ∈ R(H)
of the dual problem (8) solves

∇Ψ(W ) = H
(
VĴs +H∗(W )

)
−G = 0 (9)

or equivalently,

G−H(VĴs) = H(H∗(W )) =
1

2
P
(
(WXT +XW T )Ĵs

)
X.

We note that the linear operator H : R|Ĵs| → R(H) defined in Problem (5) is onto, HH∗ is
self-adjoint and positive definite. Therefore, one may apply the conjugate gradient (CG) method
[36, Algorithm 10.2.1] to solving the linear system (9).

Remark 2.1 The total cost of computing a solution W ∈ R(H) to the linear system (9) is
O(n3p3) flops. This cost is practically acceptable since the number of prescribed eigenpairs is
very small. The numerical tests in section 4 demonstrate that all the ADMM-based algorithms to
be proposed perform much efficiently for the large PESDIEP over the semidefinite programming
techniques (e.g., the interior point method) mentioned in [43, 54].

2.3 ADMM-based algorithms

In this section, we propose three ADMM-based iterative algorithms for solving Problem (2). For
convenience, for the current iterate (Ck, Y k, Zk), let (C̃k, Ỹ k, Z̃k) be the solution to (3). The
first algorithm is the classical ADMM as in (3), i.e.,

Ck+1 = C̃k,

Y k+1 = Ỹ k,

Zk+1 = Z̃k.
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Next, by using the descent method for structured monotone variational inequalities [56], we
propose the following modified ADMM (MADMM) for solving Problem (2):

Ck+1 = C̃k,

Y k+1 = Y k − δηk(Y k − Ỹ k),

Zk+1 = Zk − δηk(Zk − Z̃k),

where δ ∈ (0, 2) and

ηk =
1

ξk

(
ξk − 〈Y k − Ỹ k, Zk − Z̃k〉

)
, ξk = β‖Y k − Ỹ k‖2 +

1

β
‖Zk − Z̃k‖2.

Finally, by applying the acceleration technique in [14], we obtain the following relaxed (ac-
celeration) ADMM (RADMM) for solving Problem (2):

C̃k = argmin
C∈Sn+

ALβ(C, Y k, Zk),

Z̃k = Zk − β(C̃k − Y k),

Ỹ k = argmin
Y ∈SB

ALβ(C̃k, Y, Z̃k),

Ck+1 = C̃k,

Y k+1 = Y k − µ(Y k − Ỹ k),

Zk+1 = Zk − µ(Zk − Z̃k),

where µ ∈ (0, 2) is a relaxation parameter.
For the convergence of the above ADMM-based algorithms, one may see [14, 29, 30, 33, 38,

37, 56].
Finally, as in [37], we provide a feasible stopping criterion for the proposed ADMM-based

iterative algorithms. We first note that Problem (2) is a convex minimization problem. There-
fore, (C∗, Y ∗) is a solution to Problem (2) if and only if there exists a point Z∗ ∈ Sn such that
the following variational inequalities hold [45]

〈C − C∗, C∗ − Co − Z∗〉 ≥ 0 ∀C ∈ Sn+,

〈Y − Y ∗, Y ∗ − Co + Z∗〉 ≥ 0 ∀Y ∈ SB,

〈Z − Z∗, C∗ − Y ∗〉 ≥ 0 ∀Z ∈ Sn.

(10)

It is easy to check that the iterate (C̃k, Ỹ k, Z̃k) generated by (3) satisfies the following variational
inequalities and equation

〈C − C̃k, C̃k − Co − Z̃k − β(Y k − Ỹ k)〉 ≥ 0 ∀C ∈ Sn+,

〈Y − Ỹ k, Ỹ k − Co + Z̃k〉 ≥ 0 ∀Y ∈ SB,

〈Z − Z̃k, C̃k − Ỹ k + 1
β (Z̃k − Zk〉 ≥ 0 ∀Z ∈ Sn.

(11)
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By (10) and (11), (C̃k, Ỹ k, Z̃k) is a solution to (10) if and only if Y k−Ỹ k = 0 and Zk−Z̃k = 0.
Therefore, the proposed ADMM-based algorithms can be stopped when

max

{
‖Y k − Y k+1‖max

‖Y 0 − Y 1‖max
,
‖Zk − Zk+1‖max

‖Z0 − Z1‖max

}
≤ ε, (12)

where ε > 0 is a given tolerance.

3 Extensions

In this section, we extend the proposed ADMM-based algorithms to the case of lower bounds.
In many applications, the updated matrix C ∈ Sn should be positive definite [28]. This can be
guaranteed if the minimal eigenvalue of C is greater than a prescribed scalar γ > 0. As in [48],
the PESDIEP with lower bounds can be defined as follows.

min
1

2
‖C − Co‖2

s.t. CX = XΛ,

Cij = (Co)ij ∀(i, j) ∈ Is,

C � γI,

(13)

where γ > 0 and C � γI means that C − γI ∈ Sn+. We consider the following minimization
problem:

min
1

2
‖C − (Co − γI)‖2

s.t. CX = XΛ− γX,

(C)ij = (Co − γI)ij ∀(i, j) ∈ Is,

C ∈ Sn+.

(14)

We note that if C is the solution of Problem (14), then the unique solution of the PESDIEP
with lower bounds (13) is give by

C∗ = C + γI.

Thus we only need to focus on Problem (14). An ADMM-based reformulation of Problem (14)
is given by

min
1

2
‖C − Co‖2 +

1

2
‖Y − Co‖2

s.t. C − Y = 0,

C ∈ Sn+, Y ∈ SlbB ,

(15)

where SlbB := {Y ∈ Sn | Y X = XΛ− γX, Yij = (Co − γI)ij ∀(i, j) ∈ Is}.
As in section 2, we can easily develop the ADMM-based iterative algorithms for solving

Problem (15).

8



4 Numerical Tests

In this section, we report some numerical results to show the efficiency of the proposed ADMM-
based iterative algorithms for solving the PESDIEP. All the numerical tests are carried out in
MATLAB 8.1 running on a personal computer of 2.30 GHz CPU and 12.0 GB of RAM. In our
numerical tests, we choose the starting point C0 = Y 0 = Co and Z0 = 0 for all ADMM-based
iterative algorithms. We set the stopping criterion to be (12). We solve the linear equation (9)
by the CG method, which is stopped if the maximum number of iterations reaches 1000 or the
tolerance is less than 10−8. In what follows, IT., CT., and Res. denote the numbers of iterations,
the total computing time (in seconds), and the residual (‖CkX − XΛ‖2 +

∑
(i,j)∈Is((C

k)ij −
(Co)ij)

2)1/2 at the final iterate of the proposed algorithms, respectively.

4.1 Small problems

In this section, we report some numerical results for the small PESDIEP with ε = 10−8.

Example 4.1 We consider the PESDIEP with n = 6 and p = 2. Let Ĉ be a random n × n
correlation matrix given by

Ĉ =



1.0000 0.0764 0.2063 −0.0419 −0.3358 0.1113
0.0764 1.0000 0.2057 −0.5707 −0.2011 −0.3215
0.2063 0.2057 1.0000 0.1272 0.2629 −0.1643
−0.0419 −0.5707 0.1272 1.0000 −0.1665 0.1262
−0.3358 −0.2011 0.2629 −0.1665 1.0000 0.2569

0.1113 −0.3215 −0.1643 0.1262 0.2569 1.0000

 .

Then we set

Co =



1.0000 0.0841 0.2372 −0.0473 −0.3266 0.1261
0.0841 1.0000 0.2369 −0.5707 −0.1791 −0.3365
0.2372 0.2369 1.0000 0.1216 0.2695 −0.1934
−0.0473 −0.5707 0.1216 1.0000 −0.1566 0.1062
−0.3266 −0.1791 0.2695 −0.1566 1.0000 0.2703

0.1261 −0.3365 −0.1934 0.1062 0.2703 1.0000

 ,

where Is = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (2, 4), (4, 2)}. We use the two eigenvalues
{1.7761, 1.3629} of Ĉ and associated eigenvectors as prescribed eigendata.

By applying the proposed ADMM-based algorithms with β = 20 and δ = γ = 1.0 to Example
4.1, we get the physical solution as follows:

C =



1.0000 0.0899 0.2254 −0.0290 −0.3359 0.1239
0.0899 1.0000 0.2044 −0.5707 −0.1914 −0.3219
0.2254 0.2044 1.0000 0.1262 0.2758 −0.1645
−0.0290 −0.5707 0.1262 1.0000 −0.1573 0.1260
−0.3359 −0.1914 0.2758 −0.1573 1.0000 0.2656

0.1239 −0.3219 −0.1645 0.1260 0.2656 1.0000

 .

The numerical results are displayed in Table 1.
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Table 1: Convergence results for Example 4.1

ADMM MADMM RADMM
IT. Res. IT. Res. IT. Res.
8 2.5× 10−11 16 1.7× 10−10 8 1.3× 10−12

Example 4.2 This is a PESDIEP arising in structural engineering with n = 66. Let the matrix
Ĉ be BCSSTK02 (2211 nonzero entries), which comes from the set BCSSTRUC1 in the Harwell-
Boeing collection[11]. Then we set

Co := Ĉ +RC . ∗ Ĉ,

where “.*” means element-by-element multiplication and RC is a real symmetric matrix whose
entries are generated pseudo-randomly and they are uniformly distributed within [−0.2, 0.2]. We
choose p eigenpairs of Ĉ as prescribed eigendata and Is is the index set corresponding to the
entries of Co whose values are equal to zeros.

Table 2 lists the numerical results for solving Example 4.2 by the proposed ADMM-based
algorithms with β = 6 and δ = γ = 1.0.

Table 2: Convergence results for Example 4.2

ADMM MADMM RADMM
p IT. Res. IT. Res. IT. Res.
4 25 1.8× 10−11 25 2.2× 10−11 30 1.1× 10−11

8 24 1.9× 10−11 24 1.1× 10−10 29 1.4× 10−11

12 23 2.1× 10−11 24 8.6× 10−9 28 1.6× 10−11

16 24 2.4× 10−11 25 1.4× 10−10 29 2.0× 10−11

We observe from Tables 1 and 2 that the proposed ADMM-based algorithms are very effective
for solving the small PESDIEP.

4.2 Comparison with an interior-point approach

In this section, we compare the proposed ADMM-based algorithms with the interior point
method (IPM) in [54] for solving the PESDIEP. To use the IPM, one may turn the PESDIEP
into the following standard form:

min
1

2
z

s.t. CX = XΛ,

Cij = (Co)ij ∀(i, j) ∈ Is,
√
z ≥ ‖C − Co‖,

C ∈ Sn+.
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For simplicity, this problem is solved by using the package SDPT3 [54]. We focus on the following
example.

Example 4.3 We consider the PESDIEP with different n and p. We first randomly generate
an n-by-n correlation matrix Ĉ by MATLAB 8.1’s gallery(’randcorr’,n). Then we set Co to
be

(Co)ij =

{
Ĉij , (i, j) ∈ Is,
Ĉij + rijĈij , otherwise,

where rij = rji are random numbers in [−0.2, 0.2] and Is is the index set corresponding to the
entries of Co whose values are equal to or greater than 0.4. We randomly choose p eigenvalues
of Ĉ and associated eigenvectors as prescribed eigendata.

We set ε = 10−7. The IPM is implemented with the default tolerance. Table 3 shows the
numerical results for Example 4.3.

We see from Table 3 that the proposed ADMM-based algorithms behavior more efficiently
than the interior point algorithm in [54] for solving the PESDIEP. Here, we set β = 15 and
δ = γ = 0.9 for the proposed ADMM-based algorithms. We also see that there is a sudden jump
in the iteration numbers of the proposed ADMM-based algorithms (see the case of n = 200
and p = 10). This means that, for the tested problem, the proposed ADMM-based algorithms
may converge slowly after reaching a modest accuracy and β = 15 is not necessarily optimal for
these algorithms. As noted in [31], the parameter β has a direct impact on the convergence of
ADMM-based algorithms. The convergence of ADMM-based algorithms is often characterized
in terms of the residuals [12, 31]

‖Rk‖ := ‖Ck − Y k‖.

To illustrate the convergence of the proposed ADMM-based algorithms and the influence of β,
for one test of Example 4.3 with n = 200 and p = 10, Figure 1 depicts the resulting residuals
of the ADMM-based algorithms for β = 15 and δ = γ = 0.9 and the number of iterations for
δ = γ = 0.9 and varying β. We see from Figure 1 that the ADMM generates acceptable residual
(‖Rk‖ = O(10−7)) after 7 iterations and then it converges slowly for a higher accuracy. For the
MADMM and RADMM, we have similar observations. Moreover, for the tested problem, the
optimal selection of β is between 2 and 6. As noted in [12, 25], one may improve the accuracy
effectively by combing the proposed ADMM-based algorithms with Newton-type methods (e.g.,
the interior point algorithm in [54]). However, how to find the optimal parameter β is beyond the
scope of this paper. We point out that there exist some techniques on how to choose the optimal
parameters β, δ and γ for ADMM-based methods (see for instance [14, 24, 31, 34, 35, 56]).

4.3 Large problems

In this section, we report some numerical tests for solving the large PESDIEP by the proposed
ADMM-based algorithms.

For demonstration purpose, in Table 4, we report the numerical results for Examples 4.3
with ε = 10−6.

We see from Table 4 that the proposed algorithms works efficiently for solving the large PES-
DIEP in terms of both the number of iterations and computing time. Moreover, our algorithms
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Table 3: Comparison of ADMM and an interior-point approach for Example 4.3 (“—” means
failed to converge)

β = 15 and δ = γ = 0.9
IPM ADMM MADMM RADMM

n p IT. CT. Res. IT. CT. Res. IT. CT. Res. IT. CT. Res.

30 6 31 2.3250 1.6× 10−8 7 0.0470 5.7× 10−9 14 0.0320 1.4× 10−9 11 0.0310 1.8× 10−10

40 8 28 3.6660 2.2× 10−8 7 0.0470 6.9× 10−9 14 0.0630 1.7× 10−9 11 0.0460 2.0× 10−10

50 10 31 4.5870 1.2× 10−8 7 0.0780 6.7× 10−9 14 0.0940 1.6× 10−9 11 0.0620 1.9× 10−10

60 10 30 7.3170 1.9× 10−8 7 0.0470 6.8× 10−9 14 0.0780 1.6× 10−9 11 0.0620 1.8× 10−10

100 10 33 55.178 3.1× 10−9 7 0.1090 6.4× 10−9 14 0.1560 1.5× 10−9 11 0.1240 2.0× 10−10

200 10 36 1610.5 3.7× 10−10 27 0.7330 8.4× 10−11 28 0.7950 8.4× 10−11 51 1.3100 8.4× 10−11

300 10 — 7 0.4520 7.6× 10−9 14 0.8110 1.8× 10−9 11 0.5770 2.0× 10−10

k
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Figure 1: One test of Example 4.3 with n = 200 and p = 10

is very robust since it is almost independent to the dimension and number of linear constraints
of the problem.

To further illustrate the efficiency of the proposed ADMM-based algorithms, we consider a
practical example in structural engineering [28, 32].

Example 4.4 This is a PESDIEP arising in structural engineering with n = 1806. Let the
matrix Ĉ be BCSSTK14 (32630 nonzero entries), which comes from the set BCSSTRUC2 in the
Harwell-Boeing collection[11]. Then we set

Co := Ĉ +RC . ∗ Ĉ,

where RC is a real symmetric matrix whose entries are generated pseudo-randomly and they are
uniformly distributed within [−0.2, 0.2]. We choose p eigenpairs of Ĉ as prescribed eigendata.
Is is the index set corresponding to the entries of Co whose values are equal to zeros.

For demonstration purpose, we apply the ADMM-based algorithms to Example 4.4, where
the stopping criterion is given by

RRes. :=
(
‖CkX −XΛ‖2 +

∑
(i,j)∈Is

(
(Ck)ij − (Co)ij

)2)1/2
/(‖CkX‖+ ‖XΛ‖) ≤ 5.0× 10−5.
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The initial guess is as above.

Tables 5 gives the numerical results for Example 4.4. Table 5 show that the proposed
ADMM-based algorithms converge to the desired relative accuracy with only a small number of
iterations. Also, we observe that, for the large PESDIEP in Example 4.4, the major computing
time is spent on the CG method for solving the linear equation (9). An interesting question is
how to find a good preconditioner for (9), which can improve the performance of our algorithms.

Table 4: Numerical results for Example 4.3

p = 30, β = 8, and δ = γ = 1.0
ADMM MADMM RADMM

n IT. CT. Res. IT. CT. Res. IT. CT. Res.

100 8 0.14 4.7× 10−8 13 0.19 2.4× 10−7 8 0.13 6.7× 10−9

200 8 0.28 4.0× 10−8 14 0.45 9.0× 10−8 16 0.52 2.7× 10−10

500 9 1.70 4.9× 10−9 14 2.59 7.8× 10−8 20 3.39 3.1× 10−10

1,000 9 6.55 4.8× 10−9 15 11.7 1.1× 10−7 19 13.3 3.8× 10−10

2,000 8 27.2 4.3× 10−8 14 48.0 7.6× 10−8 16 51.6 7.8× 10−11

3,000 8 76.5 4.2× 10−8 15 143.4 1.7× 10−7 16 145.7 1.4× 10−11

5,000 8 290.4 4.2× 10−8 13 473.6 2.3× 10−7 13 459.5 3.3× 10−10

n = 2000, β = 8, and δ = γ = 1.0
ADMM MADMM RADMM

p IT. CT. Res. IT. CT. Res. IT. CT. Res.

10 8 27.0 2.4× 10−8 15 51.0 8.9× 10−8 15 49.9 2.5× 10−10

20 8 27.5 3.4× 10−8 14 48.8 7.2× 10−8 16 52.0 2.2× 10−10

50 8 28.5 5.6× 10−8 14 50.8 1.1× 10−7 17 58.6 4.9× 10−10

80 8 31.4 6.9× 10−8 13 53.9 3.5× 10−7 17 66.1 5.0× 10−10

100 8 32.8 7.8× 10−8 13 53.9 4.0× 10−7 15 57.0 6.7× 10−10

150 8 37.6 9.4× 10−8 13 59.6 4.5× 10−7 17 74.3 6.6× 10−10

200 8 43.2 1.1× 10−7 13 70.4 5.4× 10−7 15 76.9 8.9× 10−10

Table 5: Numerical results for Example 4.4

β = 100, and δ = γ = 1.0
ADMM MADMM RADMM

p IT. CT. RRes. IT. CT. RRes. IT. CT. RRes.

4 6 424.5 3.9× 10−5 10 671.3 2.4× 10−5 3 243.4 2.5× 10−5

8 5 364.7 2.6× 10−5 7 490.0 3.4× 10−5 3 245.3 4.3× 10−5
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