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Abstract

The partial quadratic eigenvalue assignment problem (PQEAP) is to compute a pair
of feedback matrices such that a small number of unwanted eigenvalues in a structure are
reassigned to suitable locations while keeping the remaining large number of eigenvalues and
the associated eigenvectors unchanged. The problem arises in active vibration control of
structures. For real-life applications, it is not enough just to compute the feedback matrices.
They should be computed in such a way that both closed-loop eigenvalue sensitivity and
feedback norms are as small as possible. Also, for practical effectiveness, the time-delay
between the measurement of the state and implementation of the feedback controller should
be considered while solving the PQEAP. These problems are usually solved using only system
matrices and do not necessarily take advantage of the receptances which are available by
measurements.

In this paper, we propose hybrid methods, combining the system matrices and measured
receptances, for solutions of the multi-input PQEAP and the minimum-norm PQEAP, both
for systems with and without time-delay. These hybrid methods are more efficient than
the standard methods which only use the system matrices and no the receptances. These
hybrid methods also offer several other computational advantages over the standard methods.
Our results generalize the recent work by Ram, Mottershead, and Tehrani [Linear Algebra
Appl., 434 (2011), pp. 1689-1696]. The results of numerical experiments demonstrate the
effectiveness of the proposed methods.
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1 Introduction

Vibrating structures, such as bridges, highways, buildings, automobiles, airplanes, etc., are
usually modeled by a system of second-order differential equations of the form:

M5(t) + Dx(t) + Kx(t) = £(t), (1)

where the matrices M, D, and K are, respectively, known as the mass, damping and stiffness
matrices. They are very often structured with special properties. They are symmetric and
furthermore, M is usually positive definite and diagonal or tridiagonal and K is positive semi-
definite and tridiagonal.

The dynamics of the system (1) are governed by the natural frequencies and mode
shapes. The natural frequencies are related to the eigenvalues and mode shapes are the eigen-
vectors of the associated quadratic matrix pencil:

P(\) = A*M 4+ AD + K.

If each of the matrices M, D, and K is of order n, then P()\) has 2n finite eigenvalues and
2n associated eigenvectors under the assumption that M is nonsingular [1, 2].

One of the fundamental problems in vibration is to control the undesired vibrations, such as
those caused by resonances, when vibrating structures are acted upon by some external forces,
such as the wind, an earthquake, or human weight.

Resonance is caused when some natural frequencies become close or equal to the external
frequencies. Therefore, mathematically, the vibration control problem is to reassign those few
unwanted resonant eigenvalues to suitably chosen locations, selected by the engineers, while keep-
ing the large number of remaining eigenvalues and their corresponding eigenvectors unchanged.
The latter is known as the no spill-over phenomenon in vibration engineering.

In mathematics and control literature, the above problem is known as the Partial Quadrat-
ic Eigenvalue Assignment Problem (PQEAP). A fundamental computational challenge is
to solve the PQEAP using only a small number of eigenvalues and eigenvectors of the pencil
P()), which are available by computation with the state-of-the-art computational techniques,
such as the Jacobi-Davidson method [3] or by measurements from a vibration laboratory using
limited hardware facilities.

The PQEAP as stated above is basic. For practical effectiveness, the problem must be solved
by addressing several important practical issues. These include:

¢ Robustness and minimum-norm feedback: Since the eigenvalues of a matrix may be
very sensitive even to small perturbations, the feedback matrices must be computed in such
a way that the closed-loop eigenvalues remain as insensitive as possible to small perturba-
tions of the data. Also, for applications, the feedback design should be such that the norms
of the feedback matrices are as small as possible. These considerations lead to robust and
minimum-norm quadratic partial eigenvalue assignment problems. Solutions of
robust and minimum-norm problems give rise to nonlinear optimization problems. There
still do not exist viable methods for numerically solving nonlinear optimization problem-
s. Even for local minimization, the computational challenge is to be able to compute the
gradient expressions using only a few available eigenvalues and eigenvectors.



e Time-delay in the system: Time-delay is an inevitable practical phenomenon. There
always exists a time-delay in the application of the required control force to the structure.

Design of feedback controllers is a much more difficult and challenging problem for a time-
delay system; because it involves only 2n parameters whereas the closed-loop system in
this case has an infinite number of eigenvalues. Fortunately, however, it has been shown
earlier (e.g., Ram, et al. [4]) that p < 2n eigenvalues can be reassigned in the time-delay
case.

e Use of receptances: The receptance matrix corresponding to system (1) is defined by
H(s) = (s*M +sD + K)™*.

The entries of this matrix are available by measurements. It is, therefore, highly desirable
that these measurements are used as much as possible, to ease the burden of computations
of the feedback matrices.

Some remarkable progress has been made on the solution of the PQEAP, that has addressed
some of the above challenges. The PQEAP was first solved by Datta, Elhay, and Ram [5]
in the single-input case and later their method was generalized to the multi-input case by
Datta and Sarkissian [6] and by Ram and Elhay [7] and Sarkissian [8].

Robust and minimum-norm problems have been considered by Bai, Datta, and Wang
[9], Brahma and Datta [10], Chan, Lam, and Ho [11], Chu and Datta [12], Lam and Tam
[13, 14], Lam and Yan [15], and Qian and Xu [16], Datta [1] and the references therein, etc.
Meanwhile, Mottershead, Tehrani and Ram [17] and Ram and Mottershead [18] studied
several aspects of active vibration control using receptance measurements. Recently, Ram,
Mottershead, and Tehrani [19] proposed a hybrid method, combining receptances and
system matrices, to solve the single-input quadratic eigenvalue assignment and extended
their method to the time-delay case. An important observation made in the paper is
that the quadratic partial eigenvalue assignment problem in the time-delay case can not be
solved by using receptance alone-a hybrid approach is needed.

In this paper, we

e First, generalize the single-input hybrid method of Ram, Mottershead, and Tehrani [19]
to the solution of the multi-input PQEAP.

e Then, propose a new optimization-based hybrid method for computing minimum feedback
norms of the multi-input PQEAP, for both with and without time-delay.

The proposed hybrid method offers several computational advantages over the standard
methods (without the use of the receptances) that were proposed earlier for the PQEAP
(Datta, et al [9, 10, 20], [5], [12], [21], etc.)

— First, the need to solve the Sylvester-matrix equation in computation of the feedback
matrices is eliminated.



— Second, the eigenvectors of the closed-loop pencil corresponding to the eigenvalues
that are to be reassigned are not needed in this hybrid method. They are readily
available from the entries of the receptance matrix (see Equation (15)).

e More importantly, the new hybrid method does not involve computation of the para-
metric matrix. The proper choice of this parametric matrix for the methods in [9, 10, 20]
is crucial—it needs to be chosen in such a way that the solution of the associated Sylvester
equation becomes nonsingular [See Equation (5)]. At this time, there is no systematic way
to choose this matrix, except by trial-and-error processes (see Remark 3.2 in Section 3).

Results of numerical experiments show that in all cases, the hybrid method was quite effec-
tive: (i) the eigenvalues are reassigned quite accurately, (ii) no spill-over is nicely maintained,
and (iii) feedback norms are considerably smaller with the hybrid methods than those obtained
without the use of receptances.

2 Problem Statements

Suppose a control force of the form f(¢) = Bu(t), where B is the control matrix of order n x m
(m < n), is applied to the structure model by (1). Choosing

u(t) = FTx(t) + GTx(t), (2)
where F' and G are two n X m feedback matrices, we have the closed-loop control system:
M5(t) + (D — BFT)x(t) + (K — BGT)x(t) = 0. (3)

The dynamics of this closed-loop system are now governed by the eigenvalues and eigenvectors
of the closed-loop quadratic pencil

P.(\) = XM + \(D — BFT?) + (K — BGT).

Let {A1,..., Ap; Apt1, - - -, A2p } be the spectrum of P(\) with associated eigenvectors {xi, ...,
Xp; Xp+1,- - -,Xon}. Assume that the eigenvalues {\;}}_, (p < 2n) have been identified as reso-
nant and the remaining 2n — p eigenvalues {Ap41, ..., A2, } are acceptable. Suppose that {u;}7_;
are suitably chosen numbers.

2.0.1 The Partial Quadratic Eigenvalue Assignment Problem (PQEAP)

Find the feedback matrices F' € R™*™ and G € R™*™ such that the spectrum of the closed-loop
pencil P.(A) is {f1,- ., thp; Ap+1, - - -, A2} and the eigenvectors {Xp41,...,X2,} corresponding
to the eigenvalues {A,41,..., A2, } remain unchanged.



2.0.2 Minimum-Norm and Robust QPEAP

For practical effectiveness, an active vibration design scheme must take into consideration the
robustness aspect of the design due to small variations of the data. To ensure robustness in the
design, the feedback matrices should be such that (i) they have norms as small as possible, and
(ii) the closed-loop eigenvector matrices be well-conditioned.

Both these problems are intertwined (see Datta [1]). However, we only consider the minimum-
norm feedback problem in this paper. This is practically acceptable since small feedback gains
yield smaller control signals and thus reduce the energy consumption. Moreover, small feedback
gains is useful to the reduction of noise amplification.

Minimum-norm QPEAP: The feedback matrices F' and G should be computed in such
a way that in addition to solving the basic PQEAP, their norms become as small as possible.
That is,

1
I=5(IFI%+1617)
is minimized. Here, || - || denotes the Frobenius matrix norm.

Remark 2.1 A more challenging problem is to reduce the feedback norm and the sensitivity of
closed-loop eigenvalues simultaneously. As in [9], it seems that a natural choice is to minimize
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5 (W5 + W HIE) + (IF 1% + IG17),

where 0 < o < 1 is a weighting parameter and J := [|[W|% + |W~||% can be seen as a possible
measure of the sensitivity of closed-loop eigenvalues with
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Here, zj is an eigenvector of the closed-loop pencil P.(\) corresponding to the new eigenvalue p;
for j=1,...,p. An interesting topic would be to develop a hybrid method using the receptance
and the system matrices M, D, K, which needs further investigation.

3 Solution of the PQEAP without the Use of Receptances

In what follows, we assume that M, D and K are real symmetric with M positive definite.
Let || - || and || - ||]2 denote the Euclidean vector norm and the matrix 2-norm, respectively.
Denote by A(:, k) and A(k,:) the kth column and the kth row of a matrix A, respectively.
I, is the identity matrix of order n. Suppose that (i) {u1,...,mp} N {A1,..., A2n} = 0 and
M, N {41, -0, Aen} = 0, (ii) the control matrix B has full column rank, and (iii)
(P(X), B) is partially controllable with respect to the eigenvalues A1, ..., Ay, i.e.,

rank (P(\;),B)=mn, i=1,...,p.

Let
A1 = diag()\l, ve ,)\p), AQ = diag(/\p+1, cvey )\Zn)



and

X1:[X1,...,Xp], XQI[Xerl,...,Xgn].

Bai, Datta, and Wang [9] proved the following result on the solution of the basic PQEAP.
A similar result also appears in Brahma and Datta [20].

Lemma 3.1 Given a self-conjugate set of p complex numbers {px}h_; .

(a)

()

(No spill-over part) For arbitrary ® € C™*P the feedback matrices F and G given by
F=MXx;9" and G=(MX;A +DX;)d" (4)

are such that
MX5A% + (D — BFT) XA + (K — BGT) X5 = 0.

That is, the 2n — p eigenvalues which are not reassigned and the associated eigenvectors
remain preserved.

(Eigenvalue assignment part) Choose ® € C™*P such that ®Z = T, where I' =
Y1 5Yp] € C™*P s an arbitrary nonzero matrix such that if p; = [, then v. = 7,

1 P Hj = H g k
and Z is the solution to the Sylvester equation

MZ— 7% = —-X{ BT, (5)
where ¥ = diag(p1, ..., p1p). Then, the feedback matrices F' and G defined by (4) are real
and the p given numbers {u1,...,pp} become a part of the spectrum of the closed-loop

pencil P.(\).

(Ezxplicit solution) Suppose that Z is nonsingular. Let C = [\ X{ M + XT D, XTI M].
Then [GT,FT) =TZ71C.

Remark 3.2 Non-Uniqueness of the Solution (i) Since it is possible for (5) to be satisfied
for many choices of I, it follows that the solution to the PQEAP is not unique.

Nonsingularity of the matriz Z (ii) If an initial choice of I' does not yield a nonsingular
solution Z of (5), a different T' has to be chosen and the process is repeated until a nonsingular
solution is obtained. (Notice that a nonsingular Z will guarantee a solution ® of the algebraic
system: ®Z =T in part (b) of Lemma 3.1).

4

Partial Quadratic Eigenvalue Assignment Using the Partial
Measured Receptance and the System Matrices

In this section, we propose a hybrid method for solving the PQEAP that make use of both
receptance measurements and the system matrices M, D, K. For any s € C, the receptance
matrix H(s) to the open-loop pencil P()) is defined by

H(s) = (s*M +sD + K) ™,



which can be measured without any explicit knowledge of the matrices M, D, K [22]. Let H.(s)
denote the receptance matrix corresponding to the closed-loop pencil P.()), i.e.,

H,(s) = (s°M + s(D — BFT) + (K — BG"))™" VseC.
By the Sherman-Morrison-Woodbury formula [23], we have
He(s) = H(s) + H(s)B(I;, — (G + sF)TH(s)B) (G + sF)T H(s). (6)
Notice that det(H.(p;)) — oo for j =1,...,p. It follows from (6) that
det (I, — (G + pjF)'H(uj)B) =0, j=1,...,p, (7)
ie.,

det <[ujBTH(uj), BTH ()] [ g } — Im> =0, j=1,...,p.

From the above observations, the following result on the solvability of the PQEAP follows
immediately:

Theorem 4.1 (Hybrid Solution of PQEAP): Given B € R"™™ Ay, X1, and the set of p
self-conjugate numbers {,uj}?:l. Let & € C™*P be any matrix satisfying

MX .
det <[MBTH(M), BTH ()] [ MX1A1+1DX1 ](I)Tlm) =0, j=1,....p. (8)

Then the feedback matrices F' and G defined by (4) with the matriz ® defined by above (8) solve
the PQEAP.

Proof: No Spill-over Part (i) By Lemma 3.1 (a), we know that for an arbitrary & € C™*P,
the feedback matrices F' and G defined by (4) are such that the closed-loop pencil P.(\) has the
2n — p eigenpairs {(\;, Xj)}jzipﬂ-

Eigenvalue Assignment Part (ii) Sylvester’s determinant theorem [24] states that if C1, Cy
are matrices of size ni-by-no and no-by-nq, respectively, then

det(I,, + C1Cy) = det(I,,, + C2CY). (9)
Thus, for any nonsingular ni-by-n; matrix Cj,
det(Cs + C10%) = det(C3) det(I,,, + CoC5 Cy). (10)
This, together with (8), (4), and (7), leads to:
det(Po(y)) = det (,@M +14;(D — BFT) + (K — BGT))
= det ((@M + 1D+ K) — B(G + qu)T)
— det (,@M + ;D + K) det (I, — (G + j1;F)T H(1;) B)
=0, 5=1,...,p.
Therefore, the closed-loop pencil P.(\) contains the eigenvalues {y; }1;:1' 0O



Remark 4.2 Recovering of Ram-Mottershead-Tehrani Result We point out that Theo-
rem 4.1 generalizes the recent work by Ram, Mottershead, and Tehrani [19] in the sense that they
presented a method for the single-input case only where the solution is unique whereas Theorem
4.1 provides a hybrid method for the multi-input case where the PQEAP has multiple solutions
depending on different choice of the parameter ® satisfying the conditions (8). In particular,
whenm =1, ie., F=fcR", G=gecR", B=beR", and ® = ¢p* € C'*P, it is easy to
check that £ = MX1¢ and g = (M XA + DX1)p, where ¢ is determined by

-1
B MX,
¢= (‘I’ [ MXiAy + DX, D P

pb" H(p1) b H () 1
: : and p=| : | €R"
ppb" H (1) BT H () 1

with

U =

The above result is similar to the one proved by Ram et. al. [19] for the single-input case as in
[19, Lemma 3].

Remark 4.3 We see from the proof of Theorem 4.1 that the requirements in (8) are equivalent
to

det(Pu(p;) =0, j=1,...,p.

We also remark that if the matriz ® = [¢y,...,¢,] € C™*P determined by (8) is such that
P, = @ if \j = g, then the feedback matrices F and G defined in (4) are real (see the
numerical results below).

4.1 Hybrid Computation of Minimum-Norm Feedback

From Theorem 4.1, it is obvious that ® € C™*P satisfying the condition (8) is not unique.
Therefore, there exist many solutions to the PQEAP. To reduce the energy consumption and
signal noises, it is important that the norms of the feedback matrices F' and G are as small as
possible. The minimum-norm feedback problem may be formulated (in hybrid sense) as:

min  f(Y) =3 |MX1Y 3 + 3I(MX1A + DX1)Y |3 )
s.t. g(Y) =0,

where g(Y) = (g1(Y),...,9,(Y))T € CP with g;(Y) : CP*™ — C defined by

MX
gi(Y) := det ([MBTH(M), BTH(u;)] MXiA, +1DX1 ] Y — Im> :

We note that if Y* is the solution to Problem (11), then the minimum norm solution to the
PQEAP is given by

F=MX(®*)" and G=(MXA+ DXp)(®")7,



where ®* = (Y*)7,
Now, we present an optimization method to solve Problem (11). Solving Problem (11) is
equivalent to finding Y € CP*™ and & € CP such that

{ ViY)+¢"Vg(Y) =0,
gY)=0

VIY)+ € Vg(Y)

F(Y,§) = o(¥)

Notice that -
. MX1 MXl
Vf(Y) o [ MX1A + DXy ] I: MXA + DXq :| Y
and for j =1,...,p,

. MX
Vi) = ATadi(AY )T Ay (BT H ), BHG)] | x|

MX1A+ DX,

where adj(-) means the adjoint of a square matrix. The nonlinear equations in (12) can be

solved by the classical Gauss-Newton, Levenberg-Marquardt, or trust-region-reflective methods

[25, 26, 27]. In the following, we show how the closed-loop eigenvectors corresponding to the

eigenvalues fi1, ..., i, can be computed using the measured receptances only.
Characterization of the Eigenvectors Once the minimum norm solution is available,

one may compute an eigenvector z; of the closed-loop pencil P,(\) corresponding to the new
eigenvalue p; for j =1,...,p, where (u;,2;) satisfies

(13M + (D — BFT) + (K — BG")) zj = 0. (13)

Let B = [by,...,by], F=[f1,...,f,], and G = [g1,...,gm]. Define

k k

Dy =D — ZbifiT and Kj, := K—Zbig;f, k=1,...,m,

i=1 =1

where Dy := D and K := K. For any s € C, the receptance matrices { Hi(s)} are
Hy(s) := (s°M + sDp + K;)™', k=0,1,...,m,

where Hy(s) = H(s). By the Sherman-Morrison formula [28, 29], we get

Hi,—1(5)bi(gy, + s ) Hy—1(5)
1-— (gg + ng)kal(S)bk ’

Hi(s) = Hi—1(s) + E=1,...,m. (14)

We observe from (14) that the matrices { Hi(s)} can be computed recursively given {f;}¥_,, and
{gi ?:1-



Suppose that there exists an index w such that f,, # 0 or g, # 0 while f; = 0 and g; =0
forall i =w+1,...,m. Then (13) reduces to

(43M + 1 Doy 1 + Ko 1) 25 = bu(p;f0 + g0)7;.
In this case, 0;,, = (u;£f] + gl)z; is a nonzero scalar quantity. Defining now 2; := 53‘_13Zj7 we
get
(M + 11;Doy—1 + Kyy—1) 2j = by
Thus finding an eigenvector z; of P.()) corresponding to the eigenvalue p; is equivalent to
computing:
25 = Hy1(1;)bu. (15)

This shows that once the quantities H () are available from measurements, the eigenvectors

{z;} are readily computed from them.

Algorithm 4.1 (Hybrid Algorithm for Norm Minimization without Time Delay):
Inputs:

1. The matrices M, D € R™" where MT = M > 0 and DT = D.
2. The control matrix B € R"™"™ (m < n).

3. A self-conjugate subset {\; }§=1 of the spectrum of P(\) and the associated eigenvectors
{x; }1;:1‘

4. A suitably chosen self-conjugate set {u;}"

“_, and the measured receptances {H (1;)}}

i=1-
5. € = A tolerance for gradient.
Outputs:

(i) The real feedback matrices ' and G such that the spectrum of the close-loop pencil (4)
is the set {1, ..., fp, Apt1, - .., A2n } and the objective function f(Y') defined in Problem (11) is
minimized.

(ii) The closed-loop eigenvectors {2;} corresponding to the eigenvalues p1,. .., fip.

Step 1. Form the matrices A; and X from the given eigenvalues and eigenvectors.

Step 2. Compute the solution Y* to Problem (11) by solving (12). This is done by using the
MATLAB function fsolve with the termination tolerance ¢ on the function value. This
step requires O(n%p + m3p3) flops.

Step 3. Form the feedback matrices F' = [fi,...,f,] = MX1(®)T and G = [g1,...,8n] =
(MX1A1 + DX1)(®*)T, where ®* = (Y*)T. This step needs O(n?p) operations.

Step 4. For k =m,m —1,...,1, determine the index w such that f,, # 0 or g,, # 0 while f; =0
andgi=0foralll=w+1,...,m.

Step 5. For j=1,...,p, do

Step 5.1 Compute H,_1(y;) successively by (14) using H(y;), {£}%5", and {g;}*";'. This
step needs O(n?w) operations.
Step 5.2 Compute z; by (15). This step needs O(n?) operations.
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4.1.1 Computational Advantages of Algorithm 4.1

The total computational complexity for Algorithm 4.1 is O(n?p + n?mp + m3p?) operations.
As stated earlier, our proposed optimization method has some advantages over the methods in
[9, 10, 20]. First, this method avoids solving Sylvester equations. Second, the initial guess for
the parameter Y (i.e., ®) can be chosen arbitrarily while in the methods in [9, 10, 20], as shown
in Lemma 3.1, one must choose the parameter I' = [vy,...,7,] € C™*? such that if p; = j,
then v; = ;. Furthermore, the solution Z to the Sylvester equation (5) is not guaranteed to
be nonsingular. The matrix I' has to be chosen in a trial-and-error basis until Z is nonsingular.
Third, computing the eigenvectors corresponding the new eigenvalues {; }§:1 needs O(n?mp)
operations, which is much smaller than O(n3p) operations required by the methods in [9, 10, 20],
since m,p < n.

4.1.2 Closed-Loop Condition Estimation

Assume that the closed-loop matrix

@) I

A= _y-\(K - BGT) —M-\(D - BFT)

is diagonalizable. Then the smallest spectral condition number of Ais given by [30]

— i -1
ks = min [|Qll2[Q7 "2,

where K := {Q € C?*%n . Q_lﬁQ = diag(f1, - - s fhps Ap+1s - - - » A2p) }. Since

QO L Zl PR Zp Xp+1 PEEEEY X2n
H1Z1 - HpZl Apr1Xpr1l ot A2pXop
is an eigenvector matrix of A, kog can be expressed by

kos = min [[Qodiag(v,1)||2[|diag(v, 1) Qg l2.
veR2n—1

In addition, the condition number ron := H@Hg”@_lﬂg, where the columns of @ are those of
Qo, with unity 2-norm, gives an estimate of kog: kan/V2n < kog < Koy [31].

4.1.3 Results of Numerical Experiment

In the following, we present results of numerical experiments to illustrate the effectiveness of the
proposed method. In our numerical tests, we set the tolerance for gradient to be e = 1.0 x 1075.
The numerical tests were implemented in MATLAB 7.10 and run on a PC Intel Pentium IV of
3.00 GHZ CPU.

Example 4.4 Consider the second-order control system (3) with n =3 and m = 2. Here,

40 —40 0 1 2
M=10;, D=0, K=|-40 8 -40 |, B=13 2
0 —40 80 3 4

11



The open-loop eigenvalues are: {£3.60391, £2.4940i, £0.8901i}. The first two eigenvalues {£3.6039i}
are reassigned to {—1,—2}, the other eigenvalues are kept unchanged.

By using Algorithm 4.1 to Example 4.4, we obtain

—0.0697 + 0.06861 —0.0697 — 0.06861

¢ = 0.9811 — 0.96531  0.9811 4+ 0.96531

and the minimum norm feedback matrices are given as follows:

0.4502  —6.3323 —1.6489  23.1929
F=| -10116 14.2285 , G= 3.7050 —52.1140 |,
0.8112 —11.4104 —2.9712 41.7922

where
|F||lp = 19.3554, ||G||F = 70.8918,

Kon = 127.7192, kog = 120.7465.

The close-loop eigenvalues and associated eigenvectors satisfy:

‘det (;BM +145(D — BFT) + (K — BGT)M <53x10710, 1<j<p,

071, 1<j<p,

)

H( 2M + (D — BFT)+(K—BGT))ij

H (A?M +\(D— BFT) + (K — BGT)> xjH <81x10°M, p+1<j<2n
Thus,
(i) the two eigenvalues are assigned correctly and
(ii) the remaining eigenvalues and eigenvectors were computationally kept unchanged.
(iii) The condition numbers Koy and kog are accurately estimated.

Example 4.5 [9, 10] Consider the second-order control system (3) with m = 2 and n = 10,
50,100, 200, 400, where

1 -1 0 -~ 0 0 i -
S N0 1o
0 -1 2 0 0
M=4I,, D=4I, K= , B=
0 0 - -1 2 -1 8 _01
0 0 -+ 0 -1 1 | L :

The first p = 2 eigenvalues with smallest absolute values are replaced by {—0.1, —0.2} and the
other eigenvalues are kept unchanged.

Here, we compare the feedback norms obtained by the method based on Theorem 4.1 (without
norm-minimization) with those by Algorithm 4.1 (with norm-minimization). For the method
based on Theorem 4.1, two different choices of ® were made and the computed feedback norms

were identical.
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4.1.4 Results on Eigenvalue and Eigenvector Assignment

’det (MZM +14(D — BFT) + (K — BGT))‘ <toll, 1<j<p,
H( 2M + i (D — BFT)+(K—BGT))iju <tol2, 1<j<p,
H (A?M +\(D - BFT) + (K — BGT)) xjH <tol3, p+1<j<2n.

where toll,t0l2, and to0l3 are computed upper bounds.

Table 1: Comparison of Feedback Norms with and without Minimization

Feedback Norms without Minimization Feedback Norm with Minimization (Alg. 4.1)
n 1F]» Gl < [Fllr__ TGlr toll. tol2. tol3.
10 | 11.1312 11.0814 1.4333 1.4114 12x10712 59x10"12 20x10" 14
50 698 698 3.4538 3.4516 53 x101° 1.4x10"13 3.6x 1017
100 3965 3965 4.8954 4.8945 1.6x10"12 1.3x10"1T 1.6x 10~ 12
200 | 22456 22455 6.9269 6.9266 5.6 x 10 1% 24x10° 13 25x 10~ 12
400 | 127060 127059 9.7975 9.7974 T7.7x 10712 58 x 10~ 76 x 10712
Observations:

e The two eigenvalues were accurately assigned.
e The remaining eigenvalues and eigenvectors remain invariant numerically.
e The feedback norms with norm-minimization by Algorithm 4.1 were considerably smaller

than those without norm-minimization.

4.1.5 Comparison of System Responses

To further illustrate the effectiveness of Algorithm 4.1, we compare system responses for open-
loop and closed-loop systems without norm minimization. We also compare system responses for
open-loop and closed-loop systems with norm minimization under different small perturbations
of the stiffness matrix K.

Example 4.6 Consider the second-order control system (3) with n =3 and m = 2, where

25 20 0 20 16 0 1 2
M=2;, D=|20 1.7 04|, K=|16 17 5 |, B=|3 2
0 04 25 0 5 25 3 4

Then open-loop eigenvalues are {—1.0303 + 4.08681, —0.6365 + 3.44751, —0.0082 + 0.9571i}. We
replace the two open-loop complezr eigenvalues {—0.0082 £ 0.9571i} by {—0.5 £ 0.9571i}. The
other eigenvalues are kept unchanged.

13



For simplicity, we choose & € C™*P such that

M X,

NHL . — . T . T T _ .
Aj(ma')q) = [/LJB(vm) H(/‘Lj)> B(’m) H(:LLJ)] MX,A + DX, o _I(m’)
forj=1,...,p, ie.,
-1 T
Ai(m,:) I(m,:)
As(m,: I(m,:
o || A2 (m.)
Ap(m,:) I(m,:)
By Theorem 4.1, we obtain the feedback matrices
0 —2.8177 0 —0.8301
F=1]0 32096 and G= |0 0.3300
0 —0.6878 0 —0.3544

with ||F||r = 4.3260 and ||G||r = 0.9610. Of course, one may replace m by k with 1 <k < m.

We now compare the system responses of open-loop and closed-loop systems with the feed-
back matrices F' and G obtained by Theorem 4.1. Figure 1 depicts the base 10 logarith-
m of the norm of the system responses over the given time period. The initial condition is
w(0) = 0.01 - 1, where

w(t) = [ x(t) ] and 1on = (1,...,1)7 € R

As expected, we observe from Figure 1 that the system response of the closed-loop system with
the feedback matrices F' and G obtained by Theorem 4.1 behaviors better than that of the
original open-loop system.

Next, we perturb the stiffness matrix K to K 4+ c¢K where —0.1 < ¢ < 0.1 and the data
matrices M and D, and B are kept unchanged. In this case, we compare the system responses
of the open-loop system and the perturbed closed-loop systems with the feedback matrices F'
and G obtained by Algorithm 4.1. Figure 2 shows the base 10 logarithm of the norm of the
system responses over the defined time period for different values of ¢. The initial condition is
w(0) = 0.01 - 19,. We can see from Figure 2 that the system responses of the perturbed closed-
loop system with the feedback matrices F' and G obtained by Algorithm 4.1 are all insensitive
to perturbation and successfully tend to the steady state.

5 A Hybrid Method for Partial Quadratic Eigenvalue Assign-
ment with Time Delay

In practice, there exists time delay between the measurement of the state feedback and the im-
plementation of feedback controller. We, therefore, would like to consider the following feedback
control system with time delay 7:

M%(t) + D%(t) + Kx(t) = Bu(t — 7),

14



Figure 1: Comparison of the system responses for Example 4.6
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where 7 is the input time delay and u(t) is a state feedback controller defined by (3). The
associated closed-loop delayed pencil is given by

P.(\) := N>M + A\(D — e MBFT) + (K — ¢ " BG").

The Time-Delay PQEAP is to find two feedback matrices F' and G such that the closed-loop
delayed pencil P()) has the desired eigenvalues {u;}’_; and the 2n—p eigenpairs {(};, Xj)}?ip 41

It turns out that our hybrid method for feedback norms (Theorem 4.1) and feedback norm-
minimization algorithm (Algorithm 4.1) can be easily extended to the time-delay case. Without
going into details, we state the time-delay versions of Theorem 4.1 and Algorithm 4.1 as follows:

Theorem 5.1 Solvability of the Time-Delay PQEAP Given B € R™"™, >0, A, X1,
and the set of p self-conjugate numbers {uj}gzl. Let ® € C"™*P be any matriz satisfying

MX p .
det <[,ujBTH(,uj), BT H ()] MXA, —I—lDXl ] o1 — eH Im> =0, j=1,...,p. (16)

Then the feedback matrices F' and G defined by (4) with the matriz ® defined by above (16) solve
the time-delay PQFEAP.

Proof: From Lemma 3.1 (a), we know that the feedback matrices F' and G defined by (4)
are such that the closed-loop time-delay pencil P.(\) has the 2n — p eigenpairs {()\;, xj)}?zp Y1
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Figure 2: Comparison of the system responses for Example 4.6 with perturbed K
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Then as in the proof of Theorem 4.1, we get
det(ﬁc(ﬂj)) = det (M?M +pj(D — e " BFT) + (K — e*#jTBGT)>

= det ((,@M + 1D+ K) — e HTB(G + qu)T)
= (emm)m det(/ﬁ?M + p;D + K)det (e/7 L, — (G + p; F)T H(p;)B)
=0, 5=1,...,p.

Therefore, the closed-loop time-delay pencil 136()\) contains the numbers {y; }§:1 in its spectrum.
|

Remark 5.2 We point out that Theorem 5.1 generalizes the recent work by Ram, Mottershead,
and Tehrani [19] in the sense that they presented a method for the single-input case with time
delay only where the solution is unique whereas Theorem 5.1 provides a hybrid method for the
multi-input case with time delay where the time-delay PQEAP has multiple solutions depending
on different choice of the parameter ® satisfying the conditions (16). In particular, when m = 1,
ie, F=fcR", G=geR*", B=becR" and ® = ¢* € C'*P, it is easy to check that
f=MX1¢ and g = (M X1\ + DX1)¢p, where ¢ is determined by

-1
(= MX, _
¢_<‘I’[MX1A1+DX1D P
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with

pib" H(p1) BT H () e’
W — . .

: : and p = : e CP.
ppyb" H(pp) b H (1) elr?

The above result is similar to the one given by Ram et. al. [19] for the single-input case as in
[19, Lemma 4].

Remark 5.3 We observe from the proof of Theorem 5.1 that the requirements in (16) are e-
quivalent to

det(Pe(uj)) =0, j=1,...,p.
We also remark that if the matriz ® = [¢y,...,¢p] € C™*P determined by (16) is such that
@; = Qi if \j = A\, then the feedback matrices F' and G defined in (4) are real.

From Theorem 5.1, we see that the solution to the PQEAP with time delay is not unique.
The norm-minimization problem for the time-delay problem may then be stated as follows:

min  f(Y) =3 |MX Y5 + S(MX1A + DX1)Y |2 a7
S.t. g(Y) = 07

where g(Y) = (§1(Y), ..., 3p(Y))T € CP with g;(Y) : CP*™ — C defined by

N MX ~
g;(Y) :=det ([,ujBTH(uj), BTH(,uj)] MXiA, —:DXl ] Y —eti Im> .

We note that if Y* is the solution to Problem (17), then the minimum norm feedback matrices
F and G are given by

F=MX(®)T and G=(MXA+ DX)(®")7T,

where ®* = (Y*)7,
The KKT condition for Problem (17) is to find Y € CP*™ and & € CP such that
{ VI(Y)+&"VE(Y) =0,
gyY)=0

or

VYY) +ETVE®Y)

P8 = &(v)

~ 0. (18)

It follows that

H
~ o MX, MX,
Vf(Y) o |: MX 1A+ DX,y :| |: MX1A + DXq | Y
and for j =1,...,p,
~ T, 1: T T T T [ M X,y
Vgi(Y) = Ajadj(A)Y — e Ln)", Ay = (B Hug) BTHW)] |y 3 py, |-
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Therefore, we may solve the nonlinear equation (18) by the classical Gauss-Newton, Levenberg-
Marquardt, or trust-region-reflective methods.

Once the minimum norm solution is obtained, one may compute an eigenvector z; of the
closed-loop delayed pencil ]Sc()\) corresponding to the new eigenvalue p; for j =1,...,p, where
(pj,25) satisfies

(,usz + pj(D — e MTBFT) + (K — e "7 BGT)) z; = 0. (19)

Let B = [by,...,by]|, F=[fi,...,f,], and G = [g1,...,8n]. For any s € C, define
N k N k
Dy(s):=D — e_STZbifiT and Ki(s) =K — e_STZbigiT, E=1,...,m
i=1 i=1

and Dy := D and Ky := K. For any s € C, define the delayed receptance matrices H k(s) by
~ ~ ~ -1
Hy(s) := (SQM—G—sDk(s)—i—Kk(s)) , k=0,1,...,m,

where Hy(s) = H(s). We have by the Sherman-Morrison formula,

. ~ ST Hp T+ stTVHj,_
Fuls) = Fpy(s) + S Hrr()bilgy s )Hials) (20)
1—e=7(gi + st Hy_1(s)by

We observe from (20) that Hj(s) can be computed based on H(s), {f; koo {eidr,, and e7*7.
Assume that there exists an index w such that f,, # 0 or g,, # 0 while f; = 0 and g; = 0 for
all | =w+1,...,m. The relation (19) becomes

(M?M + 11 Do (1) + Kwﬂ(#j)) z; = e by (uify + 81,)2;.

In this case, Sjw = e M7 (u;f] + gl)z; is a nonzero scalar quantity. Therefore, one may find an
eigenvector z; corresponding to j; by solving

(M3M + 1 D1 (pj) + K1 (1)) 2 = bu,  2j = 6;,,2;,

which leads to

3 = Hoy1 (1) b (21)

Based on the above discussions, we can now state the following norm-minimization algorithm
for the time-delay problem.

Algorithm 5.1 (Hybrid Algorithm for Norm Minimization with Time-Delay):
Inputs:

1. The matrices M, D € R™", where MT = M > 0 and DT = D.

2. The control matrix B € R"*™ (m < n).
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3. A self-conjugate subset {); }§:1 of the spectrum of P(\) and the corresponding eigenvectors

{x; };5:1‘

4. A suitably chosen self-conjugate set of numbers {l‘j}§:1 and the measured receptance
{H (1) Yj—1-

5. 7 = input time delay; e = tolerance for gradient.

Outputs:

(i) The real feedback matrices F' and G such that the spectrum of the close-loop delayed
pencil P,()\) is the set {m1, - s Apt1, .-, Ao} and the objective function f(Y) defined in
Problem (17) is minimized.

(ii) The closed-loop eigenvectors {z;} corresponding to the eigenvalues p1, ..., fip.

Step 1. Form the matrices A; and X from the given eigenvalues and eigenvectors.

Step 2. Compute the solution Y* to Problem (17) by solving (18). This is done by using the

MATLAB function fsolve with the termination tolerance e on the function value. This
step requires O(n%p + m3p3) flops.

Step 3. Form the feedback matrices F' = [fi,...,f,] = MX1(®*)T and G = [g1,...,8n] =

(M XA + DX1)(®*)T, where ®* = (Y*)T. This step needs O(n?p) operations.

Step 4. For k =m,m —1,...,1, determine the index w such that f, # 0 or g,, # 0 while f; =0

andgi=0foralll=w+1,...,m.

Step 5. For j =1,...,p,

Step 5.1 Compute ﬁw_l(uj) recursively by (20) and {fi};":—ll, {gi ;”:_11, and e #i7. This step
needs O(n?w) operations.

Step 5.2 Compute z; by (21). This step needs O(n?) operations.

We note that Algorithm 5.1 needs O(n?p+n?mp+m3p3) operations totally. We also remark
that the PQEAP with time delay is not considered in [9, 10, 20].

Example 5.4 (An Illustrative Example) This example is the same as Example 4.4 with
time delay T = 0.1.

5.0.6 Numerical Experiments with the Method Based on Theorem 5.1 and Algo-
rithm 5.1

By applying Algorithm 5.1 to Example 5.4, we have

X —0.0724 4 0.02861 —0.0724 — 0.02861
1.0183 — 0.40281  1.0183 + 0.4028i
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The corresponding minimum norm feedback matrices are given by

0.1878 —2.6421 —1.7115  24.0734
F=| -04221 59368 |, G= 3.8457 —54.0924
0.3385  —4.7610 —3.0840  43.3788

The close-loop eigenvalues and close-loop eigenvectors satisfy:
’det (,ﬂM (D — e BET) + (K — ewjrBGT)> ’ <80x 10710, 1<j<p,
H( 2M + 11 (D — %7 BFT) + (K — e—WBGT)) zJH <17x10°M, 1<j<p,

H (A?M + A (D — e NTBFT) 4+ (K — e_’\jTBGT)> xjH <1.0x1078, p+1<j<on

5.0.7 Comparison with Non-Optimization Method (Based on Theorem 5.1)

The non-optimization method based on Theorem 5.1 was run with two different choices of ®. The
feedback norms with one of the choices and those using the minimization algorithm, Algorithm
5.1, are displayed in Table 2.

Table 2: Comparisons of Feedback Norms for Example 5.4 with and without Mini-
mization

Time-Delay Feedback Norms without Minimization | Time-Delay Feedback Norms with Minimization

(3103 |2 r 1 r [ £2 ] r
113.8812 1037 8.0760 73.5830
Thus,

e The two eigenvalues were assigned accurately.

e The eigenvalues and their corresponding eigenvectors computationally remained undam-
aged.

e The feedback norms using the minimization algorithm (Algorithm 5.1) were considerably
smaller.

Example 5.5 This example is the time-delay version of Example 4.5 with time delay 7 = 0.1.
The first p = 2 eigenvalues with smallest absolute values are reassigned to {—0.1, —0.2} while

leaving the other eigenvalues and associated eigenvectors unchanged.

We apply the non-optimization method based on Theorem 5.1 with one choice of ® and
Algorithm 5.1 to Example 5.5. The computed feedback norms and the errors of the closed-loop
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eigenvalues and eigenvectors are displayed in Table 3. Here, tol1l., tol2., and tol3. stand for
the upper bounds for the errors of the closed-loop eigenvalues and eigenvectors, i.e.,

‘det <p2-M + p;(D — e WTBFT) 4+ (K — e—MjTBGT)M <toll., 1<j<p,
H( 2M + (D — e %7 BFT) + (K — e‘“jTBGT)> ZﬂH <tol2, 1<j<p,

H (AﬁM +Xj(D—eNTBFT) + (K — e*’\jTBGT)> xjH <tol3., p+1<j<2n.

Table 3: Comparison of Time-Delay Feedback Norms with and without Minimization

Time-Delay Feedback Time-Delay Feedback Norms with Minimization
Norms without Minimization
n ||F1||F HFQHF ”FIHF ||F2HF toll. tol2. tol3.
10 | 10.8237 10.7755 1.4104 13891 | 23 x 10712 1.2x 10~ 1T 2.0x 10~ 14
50 677 677 3.3969 3.3947 | 6.2x 101 15x 10" 3.6 x 10~ 1%
100 3848 3847 4.8146 4.8138 | 3.0x 10712 24 x 1071 15x 10712
200 21790 21789 6.8126 6.8123 | 9.0x 10~1%  4.0x 10~ 25x 10712
400 | 123292 123291 9.6358 9.6357 | 82x 10712 63 x 10T 7.4x10"1?

Observations: The following facts were observed based on our experiment on Example 5.4.

e The two eigenvalues were accurately reassigned and the remaining eigenvalues and eigen-
vectors were computationally unchanged.

e The feedback norms obtained by norm-minimization (Algorithm 5.1) were considerably

smaller than those obtained by the non norm-minimization method, based on Theorem
5.1.

6 Conclusion

Active control by state feedback gives rise to partial quadratic eigenvalue assignment which
concerns reassigning a few unwanted eigenvalues while keeping the remaining large number of
them and the corresponding eigenvectors unchanged. For robust active control, feedback must
be computed so that both feedback norms and the closed-loop eigenvalue sensitivity are mini-
mized. We have proposed new hybrid algorithms for the partial quadratic eigenvalue assignment
problem and minimization of feedback norms. Our solution methods cover systems with both
with and without time delay. These hybrid methods not only make use of the system matrices
but also take advantage of the receptances which are readily available from measurements. These
new algorithms obviously are more efficient and offer other computational advantages over the
standard methods which do not use receptances. Our future work will now be directed towards
extending our hybrid method to solution of the problem of minimizing the closed-loop eigen-
value sensitivity. This is clearly a nonlinear optimization problem and is thus computationally
challenging and is difficult to solve using the state-of-the-art computational techniques.
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