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Abstract

The partial quadratic eigenvalue assignment problem (PQEAP) is to compute a pair
of feedback matrices such that a small number of unwanted eigenvalues in a structure are
reassigned to suitable locations while keeping the remaining large number of eigenvalues and
the associated eigenvectors unchanged. The problem arises in active vibration control of
structures. For real-life applications, it is not enough just to compute the feedback matrices.
They should be computed in such a way that both closed-loop eigenvalue sensitivity and
feedback norms are as small as possible. Also, for practical effectiveness, the time-delay
between the measurement of the state and implementation of the feedback controller should
be considered while solving the PQEAP. These problems are usually solved using only system
matrices and do not necessarily take advantage of the receptances which are available by
measurements.

In this paper, we propose hybrid methods, combining the system matrices and measured
receptances, for solutions of the multi-input PQEAP and the minimum-norm PQEAP, both
for systems with and without time-delay. These hybrid methods are more efficient than
the standard methods which only use the system matrices and no the receptances. These
hybrid methods also offer several other computational advantages over the standard methods.
Our results generalize the recent work by Ram, Mottershead, and Tehrani [Linear Algebra
Appl., 434 (2011), pp. 1689–1696]. The results of numerical experiments demonstrate the
effectiveness of the proposed methods.
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1 Introduction

Vibrating structures, such as bridges, highways, buildings, automobiles, airplanes, etc., are
usually modeled by a system of second-order differential equations of the form:

M ẍ(t) +Dẋ(t) +Kx(t) = f(t), (1)

where the matrices M,D, and K are, respectively, known as the mass, damping and stiffness
matrices. They are very often structured with special properties. They are symmetric and
furthermore, M is usually positive definite and diagonal or tridiagonal and K is positive semi-
definite and tridiagonal.

The dynamics of the system (1) are governed by the natural frequencies and mode
shapes. The natural frequencies are related to the eigenvalues and mode shapes are the eigen-
vectors of the associated quadratic matrix pencil:

P (λ) = λ2M + λD +K.

If each of the matrices M,D, and K is of order n, then P (λ) has 2n finite eigenvalues and
2n associated eigenvectors under the assumption that M is nonsingular [1, 2].

One of the fundamental problems in vibration is to control the undesired vibrations, such as
those caused by resonances, when vibrating structures are acted upon by some external forces,
such as the wind, an earthquake, or human weight.

Resonance is caused when some natural frequencies become close or equal to the external
frequencies. Therefore, mathematically, the vibration control problem is to reassign those few
unwanted resonant eigenvalues to suitably chosen locations, selected by the engineers, while keep-
ing the large number of remaining eigenvalues and their corresponding eigenvectors unchanged.
The latter is known as the no spill-over phenomenon in vibration engineering.

In mathematics and control literature, the above problem is known as the Partial Quadrat-
ic Eigenvalue Assignment Problem (PQEAP). A fundamental computational challenge is
to solve the PQEAP using only a small number of eigenvalues and eigenvectors of the pencil
P (λ), which are available by computation with the state-of-the-art computational techniques,
such as the Jacobi-Davidson method [3] or by measurements from a vibration laboratory using
limited hardware facilities.

The PQEAP as stated above is basic. For practical effectiveness, the problem must be solved
by addressing several important practical issues. These include:

• Robustness and minimum-norm feedback: Since the eigenvalues of a matrix may be
very sensitive even to small perturbations, the feedback matrices must be computed in such
a way that the closed-loop eigenvalues remain as insensitive as possible to small perturba-
tions of the data. Also, for applications, the feedback design should be such that the norms
of the feedback matrices are as small as possible. These considerations lead to robust and
minimum-norm quadratic partial eigenvalue assignment problems. Solutions of
robust and minimum-norm problems give rise to nonlinear optimization problems. There
still do not exist viable methods for numerically solving nonlinear optimization problem-
s. Even for local minimization, the computational challenge is to be able to compute the
gradient expressions using only a few available eigenvalues and eigenvectors.
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• Time-delay in the system: Time-delay is an inevitable practical phenomenon. There
always exists a time-delay in the application of the required control force to the structure.

Design of feedback controllers is a much more difficult and challenging problem for a time-
delay system; because it involves only 2n parameters whereas the closed-loop system in
this case has an infinite number of eigenvalues. Fortunately, however, it has been shown
earlier (e.g., Ram, et al. [4]) that p < 2n eigenvalues can be reassigned in the time-delay
case.

• Use of receptances: The receptance matrix corresponding to system (1) is defined by

H(s) = (s2M + sD +K)−1.

The entries of this matrix are available by measurements. It is, therefore, highly desirable
that these measurements are used as much as possible, to ease the burden of computations
of the feedback matrices.

Some remarkable progress has been made on the solution of the PQEAP, that has addressed
some of the above challenges. The PQEAP was first solved by Datta, Elhay, and Ram [5]
in the single-input case and later their method was generalized to the multi-input case by
Datta and Sarkissian [6] and by Ram and Elhay [7] and Sarkissian [8].

Robust and minimum-norm problems have been considered by Bai, Datta, and Wang
[9], Brahma and Datta [10], Chan, Lam, and Ho [11], Chu and Datta [12], Lam and Tam
[13, 14], Lam and Yan [15], and Qian and Xu [16], Datta [1] and the references therein, etc.
Meanwhile, Mottershead, Tehrani and Ram [17] and Ram and Mottershead [18] studied
several aspects of active vibration control using receptance measurements. Recently, Ram,
Mottershead, and Tehrani [19] proposed a hybrid method, combining receptances and
system matrices, to solve the single-input quadratic eigenvalue assignment and extended
their method to the time-delay case. An important observation made in the paper is
that the quadratic partial eigenvalue assignment problem in the time-delay case can not be
solved by using receptance alone-a hybrid approach is needed.

In this paper, we

• First, generalize the single-input hybrid method of Ram, Mottershead, and Tehrani [19]
to the solution of the multi-input PQEAP.

• Then, propose a new optimization-based hybrid method for computing minimum feedback
norms of the multi-input PQEAP, for both with and without time-delay.

The proposed hybrid method offers several computational advantages over the standard
methods (without the use of the receptances) that were proposed earlier for the PQEAP
(Datta, et al [9, 10, 20], [5], [12], [21], etc.)

– First, the need to solve the Sylvester-matrix equation in computation of the feedback
matrices is eliminated.
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– Second, the eigenvectors of the closed-loop pencil corresponding to the eigenvalues
that are to be reassigned are not needed in this hybrid method. They are readily
available from the entries of the receptance matrix (see Equation (15)).

• More importantly, the new hybrid method does not involve computation of the para-
metric matrix. The proper choice of this parametric matrix for the methods in [9, 10, 20]
is crucial−it needs to be chosen in such a way that the solution of the associated Sylvester
equation becomes nonsingular [See Equation (5)]. At this time, there is no systematic way
to choose this matrix, except by trial-and-error processes (see Remark 3.2 in Section 3).

Results of numerical experiments show that in all cases, the hybrid method was quite effec-
tive: (i) the eigenvalues are reassigned quite accurately, (ii) no spill-over is nicely maintained,
and (iii) feedback norms are considerably smaller with the hybrid methods than those obtained
without the use of receptances.

2 Problem Statements

Suppose a control force of the form f(t) = Bu(t), where B is the control matrix of order n×m
(m ≤ n), is applied to the structure model by (1). Choosing

u(t) = F T ẋ(t) +GTx(t), (2)

where F and G are two n×m feedback matrices, we have the closed-loop control system:

M ẍ(t) + (D −BF T )ẋ(t) + (K −BGT )x(t) = 0. (3)

The dynamics of this closed-loop system are now governed by the eigenvalues and eigenvectors
of the closed-loop quadratic pencil

Pc(λ) = λ2M + λ(D −BF T ) + (K −BGT ).

Let {λ1, . . . , λp;λp+1, . . . , λ2n} be the spectrum of P (λ) with associated eigenvectors {x1, . . . ,
xp;xp+1, . . . ,x2n}. Assume that the eigenvalues {λi}pi=1 (p ≪ 2n) have been identified as reso-
nant and the remaining 2n−p eigenvalues {λp+1, . . . , λ2n} are acceptable. Suppose that {µi}pi=1

are suitably chosen numbers.

2.0.1 The Partial Quadratic Eigenvalue Assignment Problem (PQEAP)

Find the feedback matrices F ∈ Rn×m and G ∈ Rn×m such that the spectrum of the closed-loop
pencil Pc(λ) is {µ1, . . . , µp;λp+1, . . . , λ2n} and the eigenvectors {xp+1, . . . ,x2n} corresponding
to the eigenvalues {λp+1, . . . , λ2n} remain unchanged.

4



2.0.2 Minimum-Norm and Robust QPEAP

For practical effectiveness, an active vibration design scheme must take into consideration the
robustness aspect of the design due to small variations of the data. To ensure robustness in the
design, the feedback matrices should be such that (i) they have norms as small as possible, and
(ii) the closed-loop eigenvector matrices be well-conditioned.

Both these problems are intertwined (see Datta [1]). However, we only consider the minimum-
norm feedback problem in this paper. This is practically acceptable since small feedback gains
yield smaller control signals and thus reduce the energy consumption. Moreover, small feedback
gains is useful to the reduction of noise amplification.

Minimum-norm QPEAP: The feedback matrices F and G should be computed in such
a way that in addition to solving the basic PQEAP, their norms become as small as possible.
That is,

I =
1

2

(
∥F∥2F + ∥G∥2F

)
is minimized. Here, ∥ · ∥F denotes the Frobenius matrix norm.

Remark 2.1 A more challenging problem is to reduce the feedback norm and the sensitivity of
closed-loop eigenvalues simultaneously. As in [9], it seems that a natural choice is to minimize

α

2

(
∥W∥2F + ∥W−1∥2F

)
+

1− α

2

(
∥F∥2F + ∥G∥2F

)
,

where 0 ≤ α ≤ 1 is a weighting parameter and J := ∥W∥2F + ∥W−1∥2F can be seen as a possible
measure of the sensitivity of closed-loop eigenvalues with

W =

[
z1 · · · zp xp+1 · · · x2n

µ1z1 · · · µpzp λp+1xp+1 · · · λ2nx2n

]
.

Here, zj is an eigenvector of the closed-loop pencil Pc(λ) corresponding to the new eigenvalue µj

for j = 1, . . . , p. An interesting topic would be to develop a hybrid method using the receptance
and the system matrices M,D,K, which needs further investigation.

3 Solution of the PQEAP without the Use of Receptances

In what follows, we assume that M , D and K are real symmetric with M positive definite.
Let ∥ · ∥ and ∥ · ∥2 denote the Euclidean vector norm and the matrix 2-norm, respectively.
Denote by A(:, k) and A(k, :) the kth column and the kth row of a matrix A, respectively.
In is the identity matrix of order n. Suppose that (i) {µ1, . . . , µp} ∩ {λ1, . . . , λ2n} = ∅ and
{λ1, . . . , λp} ∩ {λp+1, . . . , λ2n} = ∅, (ii) the control matrix B has full column rank, and (iii)
(P (λ), B) is partially controllable with respect to the eigenvalues λ1, . . . , λp, i.e.,

rank (P (λi), B) = n, i = 1, . . . , p.

Let
Λ1 = diag(λ1, . . . , λp), Λ2 = diag(λp+1, . . . , λ2n)
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and

X1 = [x1, . . . ,xp], X2 = [xp+1, . . . ,x2n].

Bai, Datta, and Wang [9] proved the following result on the solution of the basic PQEAP.
A similar result also appears in Brahma and Datta [20].

Lemma 3.1 Given a self-conjugate set of p complex numbers {µk}pk=1.

(a) (No spill-over part) For arbitrary Φ ∈ Cm×p, the feedback matrices F and G given by

F = MX1Φ
T and G = (MX1Λ1 +DX1)Φ

T (4)

are such that

MX2Λ
2
2 + (D −BF T )X2Λ2 + (K −BGT )X2 = 0.

That is, the 2n − p eigenvalues which are not reassigned and the associated eigenvectors
remain preserved.

(b) (Eigenvalue assignment part) Choose Φ ∈ Cm×p such that ΦZ = Γ, where Γ =
[γ1, . . . ,γp] ∈ Cm×p is an arbitrary nonzero matrix such that if µj = µ̄k, then γj = γ̄k,
and Z is the solution to the Sylvester equation

Λ1Z − ZΣ = −XT
1 BΓ, (5)

where Σ = diag(µ1, . . . , µp). Then, the feedback matrices F and G defined by (4) are real
and the p given numbers {µ1, . . . , µp} become a part of the spectrum of the closed-loop
pencil Pc(λ).

(c) (Explicit solution) Suppose that Z is nonsingular. Let C = [Λ1X
T
1 M + XT

1 D,XT
1 M ].

Then [GT , F T ] = ΓZ−1C.

Remark 3.2 Non-Uniqueness of the Solution (i) Since it is possible for (5) to be satisfied
for many choices of Γ, it follows that the solution to the PQEAP is not unique.

Nonsingularity of the matrix Z (ii) If an initial choice of Γ does not yield a nonsingular
solution Z of (5), a different Γ has to be chosen and the process is repeated until a nonsingular
solution is obtained. (Notice that a nonsingular Z will guarantee a solution Φ of the algebraic
system: ΦZ = Γ in part (b) of Lemma 3.1).

4 Partial Quadratic Eigenvalue Assignment Using the Partial
Measured Receptance and the System Matrices

In this section, we propose a hybrid method for solving the PQEAP that make use of both
receptance measurements and the system matrices M,D,K. For any s ∈ C, the receptance
matrix H(s) to the open-loop pencil P (λ) is defined by

H(s) = (s2M + sD +K)−1,

6



which can be measured without any explicit knowledge of the matrices M,D,K [22]. Let Hc(s)
denote the receptance matrix corresponding to the closed-loop pencil Pc(λ), i.e.,

Hc(s) =
(
s2M + s(D −BF T ) + (K −BGT )

)−1 ∀s ∈ C.

By the Sherman-Morrison-Woodbury formula [23], we have

Hc(s) = H(s) +H(s)B
(
Im − (G+ sF )TH(s)B

)−1
(G+ sF )TH(s). (6)

Notice that det(Hc(µj)) → ∞ for j = 1, . . . , p. It follows from (6) that

det
(
Im − (G+ µjF )TH(µj)B

)
= 0, j = 1, . . . , p, (7)

i.e.,

det

([
µjB

TH(µj), B
TH(µj)

] [ F
G

]
− Im

)
= 0, j = 1, . . . , p.

From the above observations, the following result on the solvability of the PQEAP follows
immediately:

Theorem 4.1 (Hybrid Solution of PQEAP): Given B ∈ Rn×m, Λ1, X1, and the set of p
self-conjugate numbers {µj}pj=1. Let Φ ∈ Cm×p be any matrix satisfying

det

([
µjB

TH(µj), B
TH(µj)

] [ MX1

MX1Λ1 +DX1

]
ΦT − Im

)
= 0, j = 1, . . . , p. (8)

Then the feedback matrices F and G defined by (4) with the matrix Φ defined by above (8) solve
the PQEAP.

Proof: No Spill-over Part (i) By Lemma 3.1 (a), we know that for an arbitrary Φ ∈ Cm×p,
the feedback matrices F and G defined by (4) are such that the closed-loop pencil Pc(λ) has the
2n− p eigenpairs {(λj ,xj)}2nj=p+1.

Eigenvalue Assignment Part (ii) Sylvester’s determinant theorem [24] states that if C1, C2

are matrices of size n1-by-n2 and n2-by-n1, respectively, then

det(In1 + C1C2) = det(In2 + C2C1). (9)

Thus, for any nonsingular n1-by-n1 matrix C3,

det(C3 + C1C2) = det(C3) det(In2 + C2C
−1
3 C1). (10)

This, together with (8), (4), and (7), leads to:

det(Pc(µj)) = det
(
µ2
jM + µj(D −BF T ) + (K −BGT )

)
= det

(
(µ2

jM + µjD +K)−B(G+ µjF )T
)

= det
(
µ2
jM + µjD +K

)
det

(
Im − (G+ µjF )TH(µj)B

)
= 0, j = 1, . . . , p.

Therefore, the closed-loop pencil Pc(λ) contains the eigenvalues {µj}pj=1.
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Remark 4.2 Recovering of Ram-Mottershead-Tehrani Result We point out that Theo-
rem 4.1 generalizes the recent work by Ram, Mottershead, and Tehrani [19] in the sense that they
presented a method for the single-input case only where the solution is unique whereas Theorem
4.1 provides a hybrid method for the multi-input case where the PQEAP has multiple solutions
depending on different choice of the parameter Φ satisfying the conditions (8). In particular,
when m = 1, i.e., F = f ∈ Rn, G = g ∈ Rn, B = b ∈ Rn, and Φ = ϕT ∈ C1×p, it is easy to
check that f = MX1ϕ and g = (MX1Λ1 +DX1)ϕ, where ϕ is determined by

ϕ =

(
Ψ

[
MX1

MX1Λ1 +DX1

])−1

p

with

Ψ =

 µ1b
TH(µ1) bTH(µ1)
...

...
µpb

TH(µp) bTH(µp)

 and p =

 1
...
1

 ∈ Rp.

The above result is similar to the one proved by Ram et. al. [19] for the single-input case as in
[19, Lemma 3].

Remark 4.3 We see from the proof of Theorem 4.1 that the requirements in (8) are equivalent
to

det(Pc(µj)) = 0, j = 1, . . . , p.

We also remark that if the matrix Φ = [ϕ1, . . . ,ϕp] ∈ Cm×p determined by (8) is such that
ϕj = ϕ̄k if λj = λ̄k, then the feedback matrices F and G defined in (4) are real (see the
numerical results below).

4.1 Hybrid Computation of Minimum-Norm Feedback

From Theorem 4.1, it is obvious that Φ ∈ Cm×p satisfying the condition (8) is not unique.
Therefore, there exist many solutions to the PQEAP. To reduce the energy consumption and
signal noises, it is important that the norms of the feedback matrices F and G are as small as
possible. The minimum-norm feedback problem may be formulated (in hybrid sense) as:

min f(Y ) := 1
2 ∥MX1Y ∥2F + 1

2∥(MX1Λ1 +DX1)Y ∥2F

s.t. g(Y ) = 0,
(11)

where g(Y ) = (g1(Y ), . . . , gp(Y ))T ∈ Cp with gj(Y ) : Cp×m → C defined by

gj(Y ) := det

([
µjB

TH(µj), B
TH(µj)

] [ MX1

MX1Λ1 +DX1

]
Y − Im

)
.

We note that if Y ∗ is the solution to Problem (11), then the minimum norm solution to the
PQEAP is given by

F = MX1(Φ
∗)T and G = (MX1Λ1 +DX1)(Φ

∗)T ,
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where Φ∗ = (Y ∗)T .

Now, we present an optimization method to solve Problem (11). Solving Problem (11) is
equivalent to finding Y ∈ Cp×m and ξ ∈ Cp such that{

∇f(Y ) + ξT∇g(Y ) = 0,

g(Y ) = 0

or

F (Y, ξ) :=

[
∇f(Y ) + ξT∇g(Y )

g(Y )

]
= 0. (12)

Notice that

∇f(Y ) =

[
MX1

MX1Λ1 +DX1

]H [
MX1

MX1Λ1 +DX1

]
Y

and for j = 1, . . . , p,

∇gj(Y ) = AT
j adj(AjY − Im)T , Aj :=

[
µjB

TH(µj), B
TH(µj)

] [ MX1

MX1Λ1 +DX1

]
,

where adj(·) means the adjoint of a square matrix. The nonlinear equations in (12) can be
solved by the classical Gauss-Newton, Levenberg-Marquardt, or trust-region-reflective methods
[25, 26, 27]. In the following, we show how the closed-loop eigenvectors corresponding to the
eigenvalues µ1, . . . , µp can be computed using the measured receptances only.

Characterization of the Eigenvectors Once the minimum norm solution is available,
one may compute an eigenvector zj of the closed-loop pencil Pc(λ) corresponding to the new
eigenvalue µj for j = 1, . . . , p, where (µj , zj) satisfies(

µ2
jM + µj(D −BF T ) + (K −BGT )

)
zj = 0. (13)

Let B = [b1, . . . ,bm], F = [f1, . . . , fm], and G = [g1, . . . ,gm]. Define

Dk := D −
k∑

i=1

bif
T
i and Kk := K −

k∑
i=1

big
T
i , k = 1, . . . ,m,

where D0 := D and K0 := K. For any s ∈ C, the receptance matrices {Hk(s)} are

Hk(s) := (s2M + sDk +Kk)
−1, k = 0, 1, . . . ,m,

where H0(s) = H(s). By the Sherman-Morrison formula [28, 29], we get

Hk(s) = Hk−1(s) +
Hk−1(s)bk(g

T
k + sfTk )Hk−1(s)

1− (gT
k + sfTk )Hk−1(s)bk

, k = 1, . . . ,m. (14)

We observe from (14) that the matrices {Hk(s)} can be computed recursively given {fi}ki=1, and
{gi}ki=1.
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Suppose that there exists an index w such that fw ̸= 0 or gw ̸= 0 while fl = 0 and gl = 0
for all l = w + 1, . . . ,m. Then (13) reduces to(

µ2
jM + µjDw−1 +Kw−1

)
zj = bw(µjf

T
w + gT

w)zj .

In this case, δjw := (µjf
T
w + gT

w)zj is a nonzero scalar quantity. Defining now ẑj := δ−1
jw zj , we

get (
µ2
jM + µjDw−1 +Kw−1

)
ẑj = bw.

Thus finding an eigenvector ẑj of Pc(λ) corresponding to the eigenvalue µj is equivalent to
computing:

ẑj = Hw−1(µj)bw. (15)

This shows that once the quantities H(µj) are available from measurements, the eigenvectors
{ẑj} are readily computed from them.

Algorithm 4.1 (Hybrid Algorithm for Norm Minimization without Time Delay):
Inputs:

1. The matrices M,D ∈ Rn×n, where MT = M > 0 and DT = D.

2. The control matrix B ∈ Rn×m (m ≤ n).

3. A self-conjugate subset {λj}pj=1 of the spectrum of P (λ) and the associated eigenvectors
{xj}pj=1.

4. A suitably chosen self-conjugate set {µj}pj=1 and the measured receptances {H(µj)}pj=1.

5. ϵ = A tolerance for gradient.

Outputs:
(i) The real feedback matrices F and G such that the spectrum of the close-loop pencil (4)

is the set {µ1, . . . , µp, λp+1, . . . , λ2n} and the objective function f(Y ) defined in Problem (11) is
minimized.

(ii) The closed-loop eigenvectors {ẑj} corresponding to the eigenvalues µ1, . . . , µp.

Step 1. Form the matrices Λ1 and X1 from the given eigenvalues and eigenvectors.

Step 2. Compute the solution Y ∗ to Problem (11) by solving (12). This is done by using the
MATLAB function fsolve with the termination tolerance ϵ on the function value. This
step requires O(n2p+m3p3) flops.

Step 3. Form the feedback matrices F = [f1, . . . , fm] = MX1(Φ
∗)T and G = [g1, . . . ,gm] =

(MX1Λ1 +DX1)(Φ
∗)T , where Φ∗ = (Y ∗)T . This step needs O(n2p) operations.

Step 4. For k = m,m − 1, . . . , 1, determine the index w such that fw ̸= 0 or gw ̸= 0 while fl = 0
and gl = 0 for all l = w + 1, . . . ,m.

Step 5. For j = 1, . . . , p, do

Step 5.1 Compute Hw−1(µj) successively by (14) using H(µj), {fi}w−1
i=1 , and {gi}w−1

i=1 . This
step needs O(n2w) operations.

Step 5.2 Compute ẑj by (15). This step needs O(n2) operations.
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4.1.1 Computational Advantages of Algorithm 4.1

The total computational complexity for Algorithm 4.1 is O(n2p + n2mp + m3p3) operations.
As stated earlier, our proposed optimization method has some advantages over the methods in
[9, 10, 20]. First, this method avoids solving Sylvester equations. Second, the initial guess for
the parameter Y (i.e., Φ) can be chosen arbitrarily while in the methods in [9, 10, 20], as shown
in Lemma 3.1, one must choose the parameter Γ = [γ1, . . . ,γp] ∈ Cm×p such that if µj = µ̄k,
then γj = γ̄k. Furthermore, the solution Z to the Sylvester equation (5) is not guaranteed to
be nonsingular. The matrix Γ has to be chosen in a trial-and-error basis until Z is nonsingular.
Third, computing the eigenvectors corresponding the new eigenvalues {µj}pj=1 needs O(n2mp)

operations, which is much smaller than O(n3p) operations required by the methods in [9, 10, 20],
since m, p ≪ n.

4.1.2 Closed-Loop Condition Estimation

Assume that the closed-loop matrix

Â :=

[
O In

−M−1(K −BGT ) −M−1(D −BF T )

]
is diagonalizable. Then the smallest spectral condition number of Â is given by [30]

κ2S := min
Q∈K

∥Q∥2∥Q−1∥2,

where K := {Q ∈ C2n×2n : Q−1ÂQ = diag(µ1, . . . , µp, λp+1, . . . , λ2n)}. Since

Q0 :=

[
ẑ1 · · · ẑp xp+1 · · · x2n

µ1ẑ1 · · · µpẑ1 λp+1xp+1 · · · λ2nx2n

]
is an eigenvector matrix of Â, κ2S can be expressed by

κ2S = min
v∈R2n−1

∥Q0diag(v, 1)∥2∥diag(v, 1)−1Q−1
0 ∥2.

In addition, the condition number κ2N := ∥Q∥2∥Q
−1∥2, where the columns of Q are those of

Q0, with unity 2-norm, gives an estimate of κ2S : κ2N/
√
2n ≤ κ2S ≤ κ2N [31].

4.1.3 Results of Numerical Experiment

In the following, we present results of numerical experiments to illustrate the effectiveness of the
proposed method. In our numerical tests, we set the tolerance for gradient to be ϵ = 1.0× 10−6.
The numerical tests were implemented in MATLAB 7.10 and run on a PC Intel Pentium IV of
3.00 GHZ CPU.

Example 4.4 Consider the second-order control system (3) with n = 3 and m = 2. Here,

M = 10I3, D = 0, K =

 40 −40 0
−40 80 −40
0 −40 80

 , B =

 1 2
3 2
3 4

 .
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The open-loop eigenvalues are: {±3.6039i,±2.4940i,±0.8901i}. The first two eigenvalues {±3.6039i}
are reassigned to {−1,−2}, the other eigenvalues are kept unchanged.

By using Algorithm 4.1 to Example 4.4, we obtain

Φ∗ =

[
−0.0697 + 0.0686i −0.0697− 0.0686i
0.9811− 0.9653i 0.9811 + 0.9653i

]
and the minimum norm feedback matrices are given as follows:

F =

 0.4502 −6.3323
−1.0116 14.2285
0.8112 −11.4104

 , G =

 −1.6489 23.1929
3.7050 −52.1140
−2.9712 41.7922

 ,

where
∥F∥F = 19.3554, ∥G∥F = 70.8918,
κ2N = 127.7192, κ2S = 120.7465.

The close-loop eigenvalues and associated eigenvectors satisfy:

∣∣∣det(µ2
jM + µj(D −BF T ) + (K −BGT )

)∣∣∣ < 5.3× 10−10, 1 ≤ j ≤ p,∥∥∥(µ2
jM + µj(D −BF T ) + (K −BGT )

)
ẑj

∥∥∥ < 1.2× 10−14, 1 ≤ j ≤ p,∥∥∥(λ2
jM + λj(D −BF T ) + (K −BGT )

)
xj

∥∥∥ < 8.1× 10−14, p+ 1 ≤ j ≤ 2n.

Thus,

(i) the two eigenvalues are assigned correctly and

(ii) the remaining eigenvalues and eigenvectors were computationally kept unchanged.

(iii) The condition numbers κ2N and κ2S are accurately estimated.

Example 4.5 [9, 10] Consider the second-order control system (3) with m = 2 and n = 10,
50, 100, 200, 400, where

M = 4In, D = 4In K =



1 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 2 −1
0 0 · · · 0 −1 1


, B =


1 0
0 0
...

...
0 0
0 −1

 .

The first p = 2 eigenvalues with smallest absolute values are replaced by {−0.1, −0.2} and the
other eigenvalues are kept unchanged.

Here, we compare the feedback norms obtained by the method based on Theorem 4.1 (without
norm-minimization) with those by Algorithm 4.1 (with norm-minimization). For the method
based on Theorem 4.1, two different choices of Φ were made and the computed feedback norms
were identical.
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4.1.4 Results on Eigenvalue and Eigenvector Assignment



∣∣∣det(µ2
jM + µj(D −BF T ) + (K −BGT )

)∣∣∣ < tol1., 1 ≤ j ≤ p,∥∥∥(µ2
jM + µj(D −BF T ) + (K −BGT )

)
ẑj

∥∥∥ < tol2., 1 ≤ j ≤ p,∥∥∥(λ2
jM + λj(D −BF T ) + (K −BGT )

)
xj

∥∥∥ < tol3., p+ 1 ≤ j ≤ 2n.

where tol1, tol2, and tol3 are computed upper bounds.

Table 1: Comparison of Feedback Norms with and without Minimization

Feedback Norms without Minimization Feedback Norm with Minimization (Alg. 4.1)
n ∥F∥F ∥G∥F ∥F∥F ∥G∥F tol1. tol2. tol3.

10 11.1312 11.0814 1.4333 1.4114 1.2× 10−12 5.9× 10−12 2.0× 10−14

50 698 698 3.4538 3.4516 5.3× 10−15 1.4× 10−13 3.6× 10−14

100 3965 3965 4.8954 4.8945 1.6× 10−12 1.3× 10−11 1.6× 10−12

200 22456 22455 6.9269 6.9266 5.6× 10−14 2.4× 10−13 2.5× 10−12

400 127060 127059 9.7975 9.7974 7.7× 10−12 5.8× 10−11 7.6× 10−12

Observations:

• The two eigenvalues were accurately assigned.

• The remaining eigenvalues and eigenvectors remain invariant numerically.

• The feedback norms with norm-minimization by Algorithm 4.1 were considerably smaller
than those without norm-minimization.

4.1.5 Comparison of System Responses

To further illustrate the effectiveness of Algorithm 4.1, we compare system responses for open-
loop and closed-loop systems without norm minimization. We also compare system responses for
open-loop and closed-loop systems with norm minimization under different small perturbations
of the stiffness matrix K.

Example 4.6 Consider the second-order control system (3) with n = 3 and m = 2, where

M = 2I3, D =

 2.5 2.0 0
2.0 1.7 0.4
0 0.4 2.5

 , K =

 20 16 0
16 17 5
0 5 25

 , B =

 1 2
3 2
3 4

 .

Then open-loop eigenvalues are {−1.0303± 4.0868i,−0.6365± 3.4475i,−0.0082± 0.9571i}. We
replace the two open-loop complex eigenvalues {−0.0082 ± 0.9571i} by {−0.5 ± 0.9571i}. The
other eigenvalues are kept unchanged.
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For simplicity, we choose Φ ∈ Cm×p such that

Aj(m, :)ΦT :=
[
µjB(:,m)TH(µj), B(:,m)TH(µj)

] [ MX1

MX1Λ1 +DX1

]
ΦT = I(m, :)

for j = 1, . . . , p, i.e.,

Φ =




A1(m, :)
A2(m, :)

...
Ap(m, :)


−1 

I(m, :)
I(m, :)

...
I(m, :)




T

.

By Theorem 4.1, we obtain the feedback matrices

F =

 0 −2.8177
0 3.2096
0 −0.6878

 and G =

 0 −0.8301
0 0.3300
0 −0.3544


with ∥F∥F = 4.3260 and ∥G∥F = 0.9610. Of course, one may replace m by k with 1 ≤ k ≤ m.

We now compare the system responses of open-loop and closed-loop systems with the feed-
back matrices F and G obtained by Theorem 4.1. Figure 1 depicts the base 10 logarith-
m of the norm of the system responses over the given time period. The initial condition is
w(0) = 0.01 · 12n, where

w(t) =

[
x(t)
ẋ(t)

]
and 12n = (1, . . . , 1)T ∈ R2n.

As expected, we observe from Figure 1 that the system response of the closed-loop system with
the feedback matrices F and G obtained by Theorem 4.1 behaviors better than that of the
original open-loop system.

Next, we perturb the stiffness matrix K to K + cK where −0.1 ≤ c ≤ 0.1 and the data
matrices M and D, and B are kept unchanged. In this case, we compare the system responses
of the open-loop system and the perturbed closed-loop systems with the feedback matrices F
and G obtained by Algorithm 4.1. Figure 2 shows the base 10 logarithm of the norm of the
system responses over the defined time period for different values of c. The initial condition is
w(0) = 0.01 · 12n. We can see from Figure 2 that the system responses of the perturbed closed-
loop system with the feedback matrices F and G obtained by Algorithm 4.1 are all insensitive
to perturbation and successfully tend to the steady state.

5 A Hybrid Method for Partial Quadratic Eigenvalue Assign-
ment with Time Delay

In practice, there exists time delay between the measurement of the state feedback and the im-
plementation of feedback controller. We, therefore, would like to consider the following feedback
control system with time delay τ :

M ẍ(t) +Dẋ(t) +Kx(t) = Bu(t− τ),

14



Figure 1: Comparison of the system responses for Example 4.6
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where τ is the input time delay and u(t) is a state feedback controller defined by (3). The
associated closed-loop delayed pencil is given by

P̃c(λ) := λ2M + λ(D − e−λτBF T ) + (K − e−λτBGT ).

The Time-Delay PQEAP is to find two feedback matrices F and G such that the closed-loop
delayed pencil P̃c(λ) has the desired eigenvalues {µj}pj=1 and the 2n−p eigenpairs {(λj ,xj)}2nj=p+1.

It turns out that our hybrid method for feedback norms (Theorem 4.1) and feedback norm-
minimization algorithm (Algorithm 4.1) can be easily extended to the time-delay case. Without
going into details, we state the time-delay versions of Theorem 4.1 and Algorithm 4.1 as follows:

Theorem 5.1 Solvability of the Time-Delay PQEAP Given B ∈ Rn×m, τ ≥ 0, Λ1, X1,
and the set of p self-conjugate numbers {µj}pj=1. Let Φ ∈ Cm×p be any matrix satisfying

det

([
µjB

TH(µj), B
TH(µj)

] [ MX1

MX1Λ1 +DX1

]
ΦT − eµjτIm

)
= 0, j = 1, . . . , p. (16)

Then the feedback matrices F and G defined by (4) with the matrix Φ defined by above (16) solve
the time-delay PQEAP.

Proof: From Lemma 3.1 (a), we know that the feedback matrices F and G defined by (4)
are such that the closed-loop time-delay pencil P̃c(λ) has the 2n− p eigenpairs {(λj ,xj)}2nj=p+1.
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Figure 2: Comparison of the system responses for Example 4.6 with perturbed K
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−.open−loop
−closed−loop based on Alg. 4.1 with c = −0.1
−−closed−loop based on Alg. 4.1 with c = −0.06
:closed−loop based on Alg. 4.1 with c = 0.0
−−closed−loop based on Alg. 4.1 with c = 0.04
−closed−loop based on Alg. 4.1 with c = 0.1

Then as in the proof of Theorem 4.1, we get

det(P̃c(µj)) = det
(
µ2
jM + µj(D − e−µjτBF T ) + (K − e−µjτBGT )

)
= det

(
(µ2

jM + µjD +K)− e−µjτB(G+ µjF )T
)

= (e−µjτ )m det(µ2
jM + µjD +K) det

(
eµjτIm − (G+ µjF )TH(µj)B

)
= 0, j = 1, . . . , p.

Therefore, the closed-loop time-delay pencil P̃c(λ) contains the numbers {µj}pj=1 in its spectrum.

Remark 5.2 We point out that Theorem 5.1 generalizes the recent work by Ram, Mottershead,
and Tehrani [19] in the sense that they presented a method for the single-input case with time
delay only where the solution is unique whereas Theorem 5.1 provides a hybrid method for the
multi-input case with time delay where the time-delay PQEAP has multiple solutions depending
on different choice of the parameter Φ satisfying the conditions (16). In particular, when m = 1,
i.e., F = f ∈ Rn, G = g ∈ Rn, B = b ∈ Rn, and Φ = ϕT ∈ C1×p, it is easy to check that
f = MX1ϕ and g = (MX1Λ1 +DX1)ϕ, where ϕ is determined by

ϕ =

(
Ψ̃

[
MX1

MX1Λ1 +DX1

])−1

p̃
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with

Ψ̃ =

 µ1b
TH(µ1) bTH(µ1)
...

...
µpb

TH(µp) bTH(µp)

 and p̃ =

 eµ1τ

...
eµpτ

 ∈ Cp.

The above result is similar to the one given by Ram et. al. [19] for the single-input case as in
[19, Lemma 4].

Remark 5.3 We observe from the proof of Theorem 5.1 that the requirements in (16) are e-
quivalent to

det(P̃c(µj)) = 0, j = 1, . . . , p.

We also remark that if the matrix Φ = [ϕ1, . . . ,ϕp] ∈ Cm×p determined by (16) is such that
ϕj = ϕ̄k if λj = λ̄k, then the feedback matrices F and G defined in (4) are real.

From Theorem 5.1, we see that the solution to the PQEAP with time delay is not unique.
The norm-minimization problem for the time-delay problem may then be stated as follows:

min f̃(Y ) := 1
2 ∥MX1Y ∥2F + 1

2∥(MX1Λ1 +DX1)Y ∥2F

s.t. g̃(Y ) = 0,
(17)

where g̃(Y ) = (g̃1(Y ), . . . , g̃p(Y ))T ∈ Cp with g̃j(Y ) : Cp×m → C defined by

g̃j(Y ) := det

([
µjB

TH(µj), B
TH(µj)

] [ MX1

MX1Λ1 +DX1

]
Y − eµjτIm

)
.

We note that if Y ∗ is the solution to Problem (17), then the minimum norm feedback matrices
F and G are given by

F = MX1(Φ
∗)T and G = (MX1Λ1 +DX1)(Φ

∗)T ,

where Φ∗ = (Y ∗)T .
The KKT condition for Problem (17) is to find Y ∈ Cp×m and ξ ∈ Cp such that{

∇f̃(Y ) + ξT∇g̃(Y ) = 0,

g̃(Y ) = 0

or

F̃ (Y, ξ) :=

[
∇f̃(Y ) + ξT∇g̃(Y )

g̃(Y )

]
= 0. (18)

It follows that

∇f̃(Y ) =

[
MX1

MX1Λ1 +DX1

]H [
MX1

MX1Λ1 +DX1

]
Y

and for j = 1, . . . , p,

∇g̃j(Y ) = AT
j adj(AjY − eµjτIm)T , Aj :=

[
µjB

TH(µj), B
TH(µj)

] [ MX1

MX1Λ1 +DX1

]
.
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Therefore, we may solve the nonlinear equation (18) by the classical Gauss-Newton, Levenberg-
Marquardt, or trust-region-reflective methods.

Once the minimum norm solution is obtained, one may compute an eigenvector zj of the

closed-loop delayed pencil P̃c(λ) corresponding to the new eigenvalue µj for j = 1, . . . , p, where
(µj , zj) satisfies (

µ2
jM + µj(D − e−µjτBF T ) + (K − e−µjτBGT )

)
zj = 0. (19)

Let B = [b1, . . . ,bm], F = [f1, . . . , fm], and G = [g1, . . . ,gm]. For any s ∈ C, define

D̃k(s) := D − e−sτ
k∑

i=1

bif
T
i and K̃k(s) := K − e−sτ

k∑
i=1

big
T
i , k = 1, . . . ,m

and D0 := D and K0 := K. For any s ∈ C, define the delayed receptance matrices H̃k(s) by

H̃k(s) :=
(
s2M + sD̃k(s) + K̃k(s)

)−1
, k = 0, 1, . . . ,m,

where H̃0(s) = H(s). We have by the Sherman-Morrison formula,

H̃k(s) = H̃k−1(s) +
e−sτ H̃k−1(s)bk(g

T
k + sfTk )H̃k−1(s)

1− e−sτ (gT
k + sfTk )H̃k−1(s)bk

, k = 1, . . . ,m. (20)

We observe from (20) that H̃k(s) can be computed based on H(s), {fi}ki=1, {gi}ki=1, and e−sτ .

Assume that there exists an index w such that fw ̸= 0 or gw ̸= 0 while fl = 0 and gl = 0 for
all l = w + 1, . . . ,m. The relation (19) becomes(

µ2
jM + µjD̃w−1(µj) + K̃w−1(µj)

)
zj = e−µjτbw(µjf

T
w + gT

w)zj .

In this case, δ̃jw := e−µjτ (µjf
T
w +gT

w)zj is a nonzero scalar quantity. Therefore, one may find an
eigenvector z̃j corresponding to µj by solving(

µ2
jM + µjDw−1(µj) +Kw−1(µj)

)
z̃j = bw, z̃j = δ̃−1

jw zj ,

which leads to

z̃j = H̃w−1(µj)bw. (21)

Based on the above discussions, we can now state the following norm-minimization algorithm
for the time-delay problem.

Algorithm 5.1 (Hybrid Algorithm for Norm Minimization with Time-Delay):

Inputs:

1. The matrices M,D ∈ Rn×n, where MT = M > 0 and DT = D.

2. The control matrix B ∈ Rn×m (m ≤ n).
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3. A self-conjugate subset {λj}pj=1 of the spectrum of P (λ) and the corresponding eigenvectors
{xj}pj=1.

4. A suitably chosen self-conjugate set of numbers {µj}pj=1 and the measured receptance
{H(µj)}pj=1.

5. τ = input time delay; ϵ = tolerance for gradient.

Outputs:

(i) The real feedback matrices F and G such that the spectrum of the close-loop delayed
pencil P̃c(λ) is the set {µ1, . . . , µp, λp+1, . . . , λ2n} and the objective function f̃(Y ) defined in
Problem (17) is minimized.

(ii) The closed-loop eigenvectors {ẑj} corresponding to the eigenvalues µ1, . . . , µp.

Step 1. Form the matrices Λ1 and X1 from the given eigenvalues and eigenvectors.

Step 2. Compute the solution Y ∗ to Problem (17) by solving (18). This is done by using the
MATLAB function fsolve with the termination tolerance ϵ on the function value. This
step requires O(n2p+m3p3) flops.

Step 3. Form the feedback matrices F = [f1, . . . , fm] = MX1(Φ
∗)T and G = [g1, . . . ,gm] =

(MX1Λ1 +DX1)(Φ
∗)T , where Φ∗ = (Y ∗)T . This step needs O(n2p) operations.

Step 4. For k = m,m − 1, . . . , 1, determine the index w such that fw ̸= 0 or gw ̸= 0 while fl = 0
and gl = 0 for all l = w + 1, . . . ,m.

Step 5. For j = 1, . . . , p,

Step 5.1 Compute H̃w−1(µj) recursively by (20) and {fi}w−1
i=1 , {gi}w−1

i=1 , and e−µjτ . This step
needs O(n2w) operations.

Step 5.2 Compute ẑj by (21). This step needs O(n2) operations.

We note that Algorithm 5.1 needs O(n2p+n2mp+m3p3) operations totally. We also remark
that the PQEAP with time delay is not considered in [9, 10, 20].

Example 5.4 (An Illustrative Example) This example is the same as Example 4.4 with
time delay τ = 0.1.

5.0.6 Numerical Experiments with the Method Based on Theorem 5.1 and Algo-
rithm 5.1

By applying Algorithm 5.1 to Example 5.4, we have

Φ∗ =

[
−0.0724 + 0.0286i −0.0724− 0.0286i
1.0183− 0.4028i 1.0183 + 0.4028i

]
.
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The corresponding minimum norm feedback matrices are given by

F =

 0.1878 −2.6421
−0.4221 5.9368
0.3385 −4.7610

 , G =

 −1.7115 24.0734
3.8457 −54.0924

−3.0840 43.3788

 .

The close-loop eigenvalues and close-loop eigenvectors satisfy:

∣∣∣det(µ2
jM + µj(D − e−µjτBF T ) + (K − e−µjτBGT )

)∣∣∣ < 8.0× 10−10, 1 ≤ j ≤ p,∥∥∥(µ2
jM + µj(D − e−µjτBF T ) + (K − e−µjτBGT )

)
z̃j

∥∥∥ < 1.7× 10−14, 1 ≤ j ≤ p,∥∥∥(λ2
jM + λj(D − e−λjτBF T ) + (K − e−λjτBGT )

)
xj

∥∥∥ < 1.0× 10−13, p+ 1 ≤ j ≤ 2n.

5.0.7 Comparison with Non-Optimization Method (Based on Theorem 5.1)

The non-optimization method based on Theorem 5.1 was run with two different choices of Φ. The
feedback norms with one of the choices and those using the minimization algorithm, Algorithm
5.1, are displayed in Table 2.

Table 2: Comparisons of Feedback Norms for Example 5.4 with and without Mini-
mization

Time-Delay Feedback Norms without Minimization Time-Delay Feedback Norms with Minimization

∥F1∥F ∥F2∥F ∥F1∥F ∥F2∥F
113.8812 1037 8.0760 73.5830

Thus,

• The two eigenvalues were assigned accurately.

• The eigenvalues and their corresponding eigenvectors computationally remained undam-
aged.

• The feedback norms using the minimization algorithm (Algorithm 5.1) were considerably
smaller.

Example 5.5 This example is the time-delay version of Example 4.5 with time delay τ = 0.1.
The first p = 2 eigenvalues with smallest absolute values are reassigned to {−0.1, −0.2} while
leaving the other eigenvalues and associated eigenvectors unchanged.

We apply the non-optimization method based on Theorem 5.1 with one choice of Φ and
Algorithm 5.1 to Example 5.5. The computed feedback norms and the errors of the closed-loop
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eigenvalues and eigenvectors are displayed in Table 3. Here, tol1., tol2., and tol3. stand for
the upper bounds for the errors of the closed-loop eigenvalues and eigenvectors, i.e.,

∣∣∣det(µ2
jM + µj(D − e−µjτBF T ) + (K − e−µjτBGT )

)∣∣∣ < tol1., 1 ≤ j ≤ p,∥∥∥(µ2
jM + µj(D − e−µjτBF T ) + (K − e−µjτBGT )

)
z̃j

∥∥∥ < tol2., 1 ≤ j ≤ p,∥∥∥(λ2
jM + λj(D − e−λjτBF T ) + (K − e−λjτBGT )

)
xj

∥∥∥ < tol3., p+ 1 ≤ j ≤ 2n.

Table 3: Comparison of Time-Delay Feedback Norms with and without Minimization

Time-Delay Feedback Time-Delay Feedback Norms with Minimization
Norms without Minimization

n ∥F1∥F ∥F2∥F ∥F1∥F ∥F2∥F tol1. tol2. tol3.

10 10.8237 10.7755 1.4104 1.3891 2.3× 10−12 1.2× 10−11 2.0× 10−14

50 677 677 3.3969 3.3947 6.2× 10−15 1.5× 10−13 3.6× 10−14

100 3848 3847 4.8146 4.8138 3.0× 10−12 2.4× 10−11 1.5× 10−12

200 21790 21789 6.8126 6.8123 9.0× 10−14 4.0× 10−13 2.5× 10−12

400 123292 123291 9.6358 9.6357 8.2× 10−12 6.3× 10−11 7.4× 10−12

Observations: The following facts were observed based on our experiment on Example 5.4.

• The two eigenvalues were accurately reassigned and the remaining eigenvalues and eigen-
vectors were computationally unchanged.

• The feedback norms obtained by norm-minimization (Algorithm 5.1) were considerably
smaller than those obtained by the non norm-minimization method, based on Theorem
5.1.

6 Conclusion

Active control by state feedback gives rise to partial quadratic eigenvalue assignment which
concerns reassigning a few unwanted eigenvalues while keeping the remaining large number of
them and the corresponding eigenvectors unchanged. For robust active control, feedback must
be computed so that both feedback norms and the closed-loop eigenvalue sensitivity are mini-
mized. We have proposed new hybrid algorithms for the partial quadratic eigenvalue assignment
problem and minimization of feedback norms. Our solution methods cover systems with both
with and without time delay. These hybrid methods not only make use of the system matrices
but also take advantage of the receptances which are readily available from measurements. These
new algorithms obviously are more efficient and offer other computational advantages over the
standard methods which do not use receptances. Our future work will now be directed towards
extending our hybrid method to solution of the problem of minimizing the closed-loop eigen-
value sensitivity. This is clearly a nonlinear optimization problem and is thus computationally
challenging and is difficult to solve using the state-of-the-art computational techniques.
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