学术报告

当前位置:学术交流 >> 学术报告 >> 浏览文章

厦门大学2018 群表示理论研讨会

发布时间:2018年12月06日 浏览次数: 文章作者:2018-12-08 发布者:lzhx

会议名称:厦门大学2018 群表示理论研讨会

会议地点:厦门大学海韵园实验楼108

日期

时间

事项

12

8

8:30

天海花园酒店大堂集合,统一步行前往会场

8:45-9:00

开幕式,合影

主持人:钱国华

9:00-9:30

刘燕俊(江西师范大学)Trivial intersection of blocks and nilpotent Hall   subgroups

9:35-10:05

陈刚(华中师范大学)Kernels of Restrictions of Characters

主持人:王宝山

10:10-10:40

陈晓友(河南工业大学)Ito's theorem and monomial Brauer characters

10:40-11:00

休息

主持人:刘合国

11:00-11:30

海进科(青岛大学)The normalizer property of integral group rings of   semidirect products of finite $2$-closed groups by rational groups

11:35-12:05

李亚利(云南民族大学)Finite groups with exactly two nonlinear non-faithful   irreducible characters

主持人:海进科

14:45-15:20

刘合国(湖北大学):一类多重循环群的剩余有限性质

15:25-16:00

靳平(山西大学):拟本原特征标的辛结构与乘法分解

16:00-16:20

休息

主持人:靳平

16:20-16:55

钱国华(常熟理工学院)ON   SUBCLASS SIZES OF FINITE GROUPS

1655-17:25

自由讨论



12

9

9:00-12:00

表示论相关课题自由论坛(主持人:徐斐)



报告题目和摘要

1.海进科,青岛大学.

报告题目: “The normalizer property of integral group rings of semidirect products of finite $2$-closed groups by rational groups”

2钱国华,常熟理工学院.

报告题目: ON SUBCLASS SIZES OF FINITE GROUPS

摘要: For any element $x$ of a finite group $G$, there always exists a unique minimal subnormal subgroup, say $G_x$ of $G$ such that $x\in G_x$. The sub-class  of $G$ in which $x$ lies is defined by $\{x^g\,\,|\,\,g\in G_x\}$.  The aim of this paper is to investigate the influence of the sub-class sizes on the structure of finite groups.

3.靳平, 山西大学

报告题目: 拟本原特征标的辛结构与乘法分解,

摘要: 对有限可解群 G 的每个拟本原特征标 χ, 我们均定义了一个相伴的辛 G-M (χ), 据此获得 χ 的乘法分解的更多结构信息. 证明了如果 χ = α 1 ···α n为特征标的乘积, 则相应地 M (χ)= M (α 1 )···M (α n ) 为辛 G-模的正交直和; 探讨了拟本原特征标的乘法不可分与其辛结构的正交不可分的相互确定关系; 借助辛结构给出了若干拟本原特征标的乘积何时仍为拟本原的一个判别条件. 我们的结果加强了 Turull Ferguson 关于拟本原特征标的乘法分解理论中的若干经典定理.

4.陈刚, 华中师范大学.

报告题目:  Kernels of Restrictions of Characters.

5 刘合国, 湖北大学.

报告题目:一类多重循环群的剩余有限性质

摘要:构造一类2元生成的多重循环群,给出其准确的剩余有限性质。

6.刘燕俊,江西师范大学.

报告题目: Trivial intersection of blocks and nilpotent Hall subgroups

摘要:In this talk, I will report our recent progress on the problems around  the trivial intersections of (principal) blocks of a finite group, with the hope that they will receive more attraction in the coming years. 

7.李亚利, 云南民族大学.

报告题目:Finite groups with exactly two nonlinear non-faithful irreducible characters.

摘要:Let G be a finite group with exactly two nonlinear non-faithful irreducible characters. We talk about the properties of G in this note and classify finite p-groups with exactly two nonlinear non-faithful irreducible characters. Suppose G is a solvable, non-nilpotent and directly indecomposable finite group and G has exactly two nonlinear non-faithful irreducible characters $\chi_{1}, \chi_{2}$.In this note, we classify the finite groups that satisfy this properties with $\Ker\chi_{1} \cap \Ker\chi_{2}>1$.

8.陈晓友河南工业大学.

报告题目: Ito's theorem and monomial Brauer characters

Abstract: Let G be a finite solvable group and let p be a prime. We prove that the intersection of the kernels ofirreducible monomial p-Brauer characters of G with degrees divisible by p is p-closed.