Lecture 15: Matrix deviation inequality

May 29 - June 3, 2020
A is an $m \times n$ random matrix whose rows are independent, mean zero, isotropic and sub-gaussian random vectors in \mathbb{R}^n.

(If you find it helpful to think in terms of concrete examples, let the entries of A be independent $\mathcal{N}(0, 1)$ random variables.)

For a fixed vector $x \in \mathbb{R}^n$, we have

\[
\mathbb{E}\|Ax\|_2^2 = \mathbb{E} \sum_{j=1}^{m} (A_{j,:}x)^2 = \sum_{j=1}^{m} \mathbb{E}(A_{j,:}x)^2 \\
= \sum_{j=1}^{m} x^T \mathbb{E}(A_{j,:}^TA_{j,:})x = m\|x\|_2^2.
\]

Further, if we assume that concentration about the mean holds here (and in fact, it does), we should expect that

\[
\|Ax\|_2 \approx \sqrt{m}\|x\|_2
\]

with high probability.
Similarly to Johnson-Lindenstrauss Lemma, our next goal is to make the last formula hold simultaneously over all vectors \(\mathbf{x} \) in some fixed set \(\mathcal{T} \subset \mathbb{R}^n \). Precisely, we may ask – how large is the average uniform deviation:

\[
\mathbb{E} \sup_{\mathbf{x} \in \mathcal{T}} \left| \| A\mathbf{x} \|_2 - \sqrt{m} \| \mathbf{x} \|_2 \right|
\]

This quantity should clearly depend on some notion of the size of \(\mathcal{T} \): the larger \(\mathcal{T} \), the larger should the uniform deviation be. So, how can we quantify the size of \(\mathcal{T} \) for this problem? In the next section we will do precisely this – introduce a convenient, geometric measure of the sizes of sets in \(\mathbb{R}^n \), which is called Gaussian width.
1. Gaussian width

- **Definition.** Let $\mathcal{T} \subset \mathbb{R}^n$ be a bounded set, and g be a standard normal random vector in \mathbb{R}^n, i.e. $g \sim \mathcal{N}(0, I_n)$. Then the quantities

\[
\omega(\mathcal{T}) := \mathbb{E} \sup_{x \in \mathcal{T}} \langle g, x \rangle \quad \text{and} \quad \gamma(\mathcal{T}) := \mathbb{E} \sup_{x \in \mathcal{T}} |\langle g, x \rangle|
\]

are called the **Gaussian width** of \mathcal{T} and the **Gaussian complexity** of \mathcal{T}, respectively.

- Gaussian width and Gaussian complexity are closely related. Indeed, (Exercise)

\[
2\omega(\mathcal{T}) = \omega(\mathcal{T} - \mathcal{T}) = \mathbb{E} \sup_{x,y \in \mathcal{T}} \langle g, x - y \rangle = \mathbb{E} \sup_{x,y \in \mathcal{T}} |\langle g, x - y \rangle| = \gamma(\mathcal{T} - \mathcal{T}).
\]
Gaussian width has a natural geometric interpretation. Suppose g is a unit vector in \mathbb{R}^n. Then a moment’s thought reveals that $\sup_{x,y \in T} \langle g, x - y \rangle$ is simply the width of T in the direction of g, i.e. the distance between the two hyperplanes with normal g that touch T on both sides as shown in the figure. Then $2\omega(T)$ can be obtained by averaging the width of T over all directions g in \mathbb{R}^n.

\[\text{width} \]

\[\langle g, x - y \rangle \]
• This reasoning is valid except where we assumed that \mathbf{g} is a unit vector. Instead, for $\mathbf{g} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_n)$ we have $\mathbb{E}\|\mathbf{g}\|^2 = n$ and

$$\|\mathbf{g}\|_2 \approx \sqrt{n} \quad \text{with high probability.}$$

(Check both these claims using Bernstein’s inequality.) Thus, we need to scale by the factor \sqrt{n}. Ultimately, the geometric interpretation of the Gaussian width becomes the following: $\omega(\mathcal{T})$ is approximately $\sqrt{n}/2$ larger than the usual, geometric width of \mathcal{T} averaged over all directions.

• A good exercise is to compute the Gaussian width and complexity for some simple sets, such as the unit balls of the ℓ_p norms in \mathbb{R}^n, which we denote by $\mathcal{B}_p^n = \{ \mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\|_p \leq 1 \}$. We have

$$\gamma(\mathcal{B}_2^n) \sim \sqrt{n}, \quad \gamma(\mathcal{B}_1^n) \sim \sqrt{\log n}.$$

For any finite set $\mathcal{T} \subset \mathcal{B}_2^n$, we have $\gamma(\mathcal{T}) \lesssim \sqrt{\log |\mathcal{T}|}$. The same holds for Gaussian width $\omega(\mathcal{T})$.

2. Matrix deviation inequality

Theorem 1 (Matrix deviation inequality)

Let A be an $m \times n$ matrix whose rows $A_{i,:}$ are independent, isotropic and sub-gaussian random vectors in \mathbb{R}^n. Let $\mathcal{T} \subset \mathbb{R}^n$ be a fixed bounded set. Then

$$
\mathbb{E} \sup_{x \in \mathcal{T}} \left| \|Ax\|_2 - \sqrt{m}\|x\|_2 \right| \leq CK^2 \gamma(\mathcal{T})
$$

where

$$
K = \max_i \|A_{i,:}\|_{\psi_2}
$$

is the maximal sub-gaussian norm of the rows of A.

2.1 Tail bound.

- It is often useful to have results that hold with high probability rather than in expectation. There exists a high-probability version of the matrix deviation inequality, and it states the following.
Let $u \geq 0$. Then the event

$$\sup_{x \in \mathcal{T}} \left| \|Ax\|_2 - \sqrt{m}\|x\|_2 \right| \leq CK^2[\gamma(\mathcal{T}) + u \cdot \text{rad}(\mathcal{T})]$$

holds with probability at least $1 - 2\exp(-u^2)$. Here $\text{rad}(\mathcal{T})$ is the radius of \mathcal{T}, defined as

$$\text{rad}(\mathcal{T}) := \sup_{x \in \mathcal{T}} \|x\|_2.$$

Since $\text{rad}(\mathcal{T}) \lesssim \gamma(\mathcal{T})$ we improve the bound as

$$\sup_{x \in \mathcal{T}} \left| \|Ax\|_2 - \sqrt{m}\|x\|_2 \right| \lesssim K^2u\gamma(\mathcal{T})$$

for all $u \geq 1$. This is a weaker but still a useful inequality. For example, we can use it to bound all higher moments of the deviation:

$$\left(\mathbb{E} \sup_{x \in \mathcal{T}} \left| \|Ax\|_2 - \sqrt{m}\|x\|_2 \right|^p \right)^{1/p} \leq C_pK^2\gamma(\mathcal{T})$$

where $C_p \leq C\sqrt{p}$ for $p \geq 1$.
2.2 Deviation of squares

- It is sometimes helpful to bound the deviation of the square $\|Ax\|_2^2$ rather than $\|Ax\|_2$ itself.
- We can easily deduce the deviation of squares by using the identity

 $$a^2 - b^2 = (a - b)^2 + 2b(b - a)$$

 for $a = \|Ax\|_2$ and $b = \sqrt{m}\|x\|_2$.
- We have

 $$\mathbb{E} \sup_{x \in \mathcal{T}} \left| \|Ax\|_2^2 - m\|x\|_2^2 \right| \leq CK^4\gamma(\mathcal{T})^2 + CK^2\sqrt{m}\text{rad}(\mathcal{T})\gamma(\mathcal{T}).$$
2.3 Deriving Johnson-Lindenstrauss Lemma

- \(\mathcal{X} \subset \mathbb{R}^n \) and \(\mathcal{T} = \{ (x - y)/\|x - y\|_2 : x, y \in \mathcal{X} \} \). Then \(\mathcal{T} \) is finite and we have

\[
\gamma(\mathcal{T}) \lesssim \sqrt{\log |\mathcal{T}|} \leq \sqrt{\log |\mathcal{X}|^2} \lesssim \sqrt{\log |\mathcal{X}|}.
\]

Matrix deviation inequality and \(m \geq C\varepsilon^{-2} \log N \) then yield

\[
\sup_{x,y \in \mathcal{X}} \left| \frac{\| A(x - y) \|_2}{\|x - y\|_2} - \sqrt{m} \right| \lesssim \sqrt{\log N} \leq \varepsilon \sqrt{m}
\]

with high probability, say 0.99. Multiplying both sides by \(\|x - y\|_2/\sqrt{m} \), we can write the last bound as follows. With probability at least 0.99, we have

\[
(1 - \varepsilon)\|x - y\|_2 \leq \frac{1}{\sqrt{m}}\|Ax - Ay\|_2 \leq (1 + \varepsilon)\|x - y\|_2
\]

for all \(x, y \in \mathcal{X} \).
3. Covariance estimation

- We already showed that $N \sim n \log n$ samples are enough to estimate the covariance matrix of a general distribution in \mathbb{R}^n.
- We can do better if the distribution is sub-gaussian: we can get rid of the logarithmic oversampling and the boundedness condition.

Theorem 2 (Covariance estimation for sub-gaussian distributions)

Let \mathbf{X} be a random vector in \mathbb{R}^n with covariance matrix Σ. Suppose \mathbf{X} is sub-gaussian, and more specifically for any $\mathbf{x} \in \mathbb{R}^n$

$$\|\langle \mathbf{X}, \mathbf{x} \rangle\|_{\psi_2} \lesssim \|\langle \mathbf{X}, \mathbf{x} \rangle\|_{L^2} = \|\Sigma^{1/2}\mathbf{x}\|_2.$$

Then, for every $N \geq 1$, we have

$$\mathbb{E}\|\Sigma_N - \Sigma\| \lesssim \|\Sigma\| \left(\sqrt{\frac{n}{N}} + \frac{n}{N}\right).$$

- This result shows $N \sim \varepsilon^{-2}n$ gives $\mathbb{E}\|\Sigma_N - \Sigma\| \lesssim \varepsilon\|\Sigma\|$.

Matrix deviation inequality | DAMC Lecture 15 | May 29 - June 3, 2020 | 11 / 22
Proof. We first bring the random vectors X, X_1, \ldots, X_N to the isotropic position. This can be done by a suitable linear transformation. You will easily check that there exists isotropic random vectors Z, Z_1, \ldots, Z_N such that

$$X = \Sigma^{1/2} Z, \quad X_i = \Sigma^{1/2} Z_i, \quad i = 1, \ldots, N.$$

The sub-gaussian assumption implies that

$$\|Z\|_{\psi_2} \lesssim 1.$$

Then

$$\|\Sigma_N - \Sigma\| = \|\Sigma^{1/2} R_N \Sigma^{1/2}\| = \max_{\|x\|_2 = 1} \langle \Sigma^{1/2} R_N \Sigma^{1/2} x, x \rangle$$

where

$$R_N := \frac{1}{N} \sum_{i=1}^{N} Z_i Z_i^T - I_n.$$
Let $\mathcal{T} := \Sigma^{1/2}\{x \in \mathbb{R}^n : \|x\|_2 = 1\}$. We can rewrite $\|\Sigma_N - \Sigma\|$ as

$$
\|\Sigma_N - \Sigma\| = \max_{x \in \mathcal{T}} \langle R_N x, x \rangle = \max_{x \in \mathcal{T}} \frac{1}{N} \sum_{i=1}^N \langle Z_i, x \rangle^2 - \|x\|_2^2
= \frac{1}{N} \max_{x \in \mathcal{T}} \|A x\|_2^2 - N\|x\|_2^2.
$$

Now apply the matrix deviation inequality for squares to conclude that

$$
\mathbb{E} \|\Sigma_N - \Sigma\| \lesssim \frac{1}{N} \left((\mathcal{T})^2 + \sqrt{N \operatorname{rad}(\mathcal{T}) \gamma(\mathcal{T})} \right).
$$

The radius and Gaussian width of the ellipsoid \mathcal{T} are easy to compute:

$$
\operatorname{rad}(\mathcal{T}) = \|\Sigma\|^{1/2} \quad \text{and} \quad \gamma(\mathcal{T}) \leq (\operatorname{tr}(\Sigma))^{1/2}.
$$

By using $\operatorname{tr}(\Sigma) \leq n\|\Sigma\|$, we have

$$
\mathbb{E} \|\Sigma_N - \Sigma\| \lesssim \|\Sigma\| \left(\sqrt{\frac{n}{N}} + \frac{n}{N} \right). \quad \square
$$
3.1 Low-dimensional distributions

- We can show that much fewer samples are needed for covariance estimation of low-dimensional sub-gaussian distributions. Indeed, the proof actually yields

\[\mathbb{E}\|\Sigma_N - \Sigma\| \lesssim \|\Sigma\| \left(\sqrt{\frac{r}{N}} + \frac{r}{N} \right) \]

where

\[r = r(\Sigma^{1/2}) = \frac{\text{tr}\Sigma}{\|\Sigma\|} \]

is the stable rank of \(\Sigma^{1/2} \). This means that covariance estimation is possible with

\[N \sim r \]

samples.
4. Underdetermined linear equations

- Suppose we need to solve a severely underdetermined system of linear equations: say, we have \(m \) equations in \(n \gg m \) variables

\[
Ax = y.
\]

- When the linear system is underdetermined, we can not find \(x \) with any accuracy, unless we know something extra about \(x \). So, let us assume that we do have some a-priori information. We can describe this situation mathematically by assuming that

\[
x \in \mathcal{K}
\]

where \(\mathcal{K} \subset \mathbb{R}^n \) is some known set in \(\mathbb{R}^n \) that describes anything that we know about \(x \) a-priori.

- Summarizing, here is the problem we are trying to solve. Determine a solution \(x = x(A, y, \mathcal{K}) \) to the underdetermined linear equation \(Ax = y \) as accurately as possible, assuming that \(x \in \mathcal{K} \).
4.1 An optimization approach

- We convert the set \mathcal{K} into a function on \mathbb{R}^n which is called the Minkowski functional of \mathcal{K}. This is basically a function whose level sets are multiples of \mathcal{K}.

- To define it formally, assume that \mathcal{K} is star-shaped, which means that together with any point x, the set \mathcal{K} must contain the entire interval that connects x with the origin; see the figure for illustration.

![Diagram of star-shaped sets](image)

The set on the left (whose boundary is shown) is star-shaped, the set on the right is not.
The Minkowski functional of \mathcal{K} is defined as

$$\|x\|_\mathcal{K} := \inf\{ t > 0 : x/t \in \mathcal{K} \}, \quad x \in \mathbb{R}^n.$$

If the set \mathcal{K} is convex and symmetric about the origin, $\|x\|_\mathcal{K}$ is actually a norm on \mathbb{R}^n. (Exercise)

Now we propose the following way to solve the recovery problem: solve the optimization program

$$\min \|x'\|_\mathcal{K} \quad \text{subject to} \quad y = A x'.$$

Note that this is a very natural program: it looks at all solutions to the equation $y = A x'$ and tries to “shrink” the solution x' toward \mathcal{K}. (This is what minimization of Minkowski functional is about.)

Also note that if \mathcal{K} is convex, this is a convex optimization program, and thus can be solved effectively by one of the many available numeric algorithms.
• The main question we should now be asking is – would the solution to this program approximate the original vector \(\mathbf{x} \)? The following result bounds the approximation error for a probabilistic model of linear equations.

Theorem 3 (Recovery by optimization)

Assume that \(\mathbf{A} \) is an \(m \times n \) random matrix whose rows \(\mathbf{A}_{i,:} \) are independent, isotropic and sub-gaussian random vectors in \(\mathbb{R}^n \). The solution \(\hat{\mathbf{x}} \) of the optimization problem satisfies

\[
\mathbb{E} \| \hat{\mathbf{x}} - \mathbf{x} \|_2 \lesssim \frac{\omega(K)}{\sqrt{m}},
\]

where \(\omega(K) \) is the Gaussian width of \(K \).

Proof. Both the original vector \(\mathbf{x} \) and the solution \(\hat{\mathbf{x}} \) are feasible vectors for the optimization program. Then \(\| \hat{\mathbf{x}} \|_K \leq \| \mathbf{x} \|_K \leq 1 \). Thus both \(\hat{\mathbf{x}}, \mathbf{x} \in K \).
By $A\hat{x} = Ax = y$, we have $A(\hat{x} - x) = 0$. Let us apply matrix deviation inequality for $\mathcal{T} := \mathcal{K} - \mathcal{K}$. It gives

$$\sup_{u,v \in \mathcal{K}} \left| \| A(u - v) \|_2 - \sqrt{m} \| u - v \|_2 \right| \lesssim \gamma(\mathcal{T}) = 2\omega(\mathcal{K}).$$

Substitute $u = \hat{x}$ and $v = x$ here. We may do this since, as we noted above, both these vectors belong to \mathcal{K}. But then the term $\| A(u - v) \|_2$ will equal zero. It disappears from the bound, and we get

$$\mathbb{E} \sqrt{m} \| \hat{x} - x \|_2 \lesssim \omega(\mathcal{K}).$$

Dividing both sides by \sqrt{m} we complete the proof.

This theorem says that a signal $x \in \mathcal{K}$ can be efficiently recovered from

$$m \sim \omega(\mathcal{K})^2$$

random linear measurements.
5. Sparse recovery

- Suppose we know that the signal \mathbf{x} is sparse, which means that only a few coordinates of \mathbf{x} are nonzero. As before, our task is to recover \mathbf{x} from the random linear measurements given by the vector

$$\mathbf{y} = \mathbf{A}\mathbf{x},$$

where \mathbf{A} is an $m \times n$ random matrix.

- The number of nonzero coefficients of a vector $\mathbf{x} \in \mathbb{R}^n$, or the sparsity of \mathbf{x}, is often denoted $\|\mathbf{x}\|_0$. This is reminiscent of the notation for the ℓ_p norm $\|\mathbf{x}\|_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$, and for a reason. You can quickly check that

$$\|\mathbf{x}\|_0 = \lim_{p \to 0} \|\mathbf{x}\|_p.$$

- Keep in mind that neither $\|\mathbf{x}\|_0$ nor $\|\mathbf{x}\|_p$ for $0 < p < 1$ are actually norms on \mathbb{R}^n, since they fail triangle inequality.
Our first attempt to recover \(\mathbf{x} \) is to try the following optimization problem:

\[
\min \| \mathbf{x}' \|_0 \quad \text{subject to} \quad \mathbf{y} = \mathbf{A}\mathbf{x}'.
\]

This is sensible because this program selects the sparsest feasible solution. But there is an implementation caveat: the function \(f(\mathbf{x}) = \| \mathbf{x} \|_0 \) is highly non-convex and even discontinuous. There is simply no known algorithm to solve the optimization problem efficiently.

To overcome this difficulty, we use

\[
\min \| \mathbf{x}' \|_1 \quad \text{subject to} \quad \mathbf{y} = \mathbf{A}\mathbf{x}'.
\]

This is a convexification of the non-convex program, and a variety of numeric convex optimization methods are available to solve it efficiently.

We will now show that an \(s \)-sparse signal \(\mathbf{x} \in \mathbb{R}^n \) can be efficiently recovered from \(m \sim s \log n \) random linear measurements.
Theorem 4 (Sparse recovery by optimization)

Assume A is a random matrix as in Theorem 3. If an unknown vector $x \in \mathbb{R}^n$ has at most s non-zero coordinates, i.e. $\|x\|_0 \leq s$, then the solution \hat{x} of the ℓ_1 optimization program satisfies

$$\mathbb{E}\|\hat{x} - x\|_2 \lesssim \sqrt{(s \log n)/m}\|x\|_2.$$

Proof. Cauchy-Schwarz inequality shows that $\|x\|_1 \leq \sqrt{s}\|x\|_2$. Denote the unit ball of the ℓ_1 norm in \mathbb{R}^n by B_1^n. Then we can rewrite $\|x\|_1 \leq \sqrt{s}\|x\|_2$ as the inclusion

$$x \in \sqrt{s}\|x\|_2 \cdot B_1^n := K.$$

By the Gaussian width of B_1^n, we have

$$\omega(K) = \sqrt{s}\|x\|_2 \cdot \omega(B_1^n) \leq \sqrt{s}\|x\|_2 \cdot \gamma(B_1^n) \leq \sqrt{s}\|x\|_2 \cdot \sqrt{\log n}.$$

Substitute this in Theorem 3 and complete the proof.