Lecture 12: Concentration of sums of independent random variables

May 15 - 20, 2020
1. Why is probability more and more important?

Probabilistic reasoning has a major impact on modern data science. There are roughly two ways in which this happens.

- *Randomized algorithms*, which perform some operations at random, have long been developed in computer science and remain very popular. Randomized algorithms are among the most effective methods – and sometimes the only known ones – for many data problems.

- *Random models of data* form the usual premise of statistical analysis. Even when the data at hand is deterministic, it is often helpful to think of it as a random sample drawn from some unknown distribution (“population”).

In these lectures, we will encounter both randomized algorithms and random models of data.

- Probabilistic linear algebra.
 A new and vigorous research direction
2. Gaussian, or normal, distribution $\mathcal{N}(\mu, \sigma^2)$

- Standard normal random variable $X \sim \mathcal{N}(0, 1)$:

 (i) Tail:
 $$\mathbb{P}\{|X| \geq t\} \leq 2 \exp(-t^2/2), \quad \forall \ t \geq 0.$$

 (ii) Moment:
 $$\|X\|_p := (\mathbb{E}|X|^p)^{1/p} = \mathcal{O}(\sqrt{p}) \quad \text{as} \ p \to \infty.$$

 (iii) Moment Generation function (MGF):
 $$\mathbb{E}\exp(\lambda X) = \exp(\lambda^2/2) \quad \text{for all} \ \lambda \in \mathbb{R}.$$

 (iv) MGF of square:
 $$\mathbb{E}\exp(cX^2) \leq 2 \quad \text{for some} \ c > 0.$$

- The sum of independent normal random variables is also normal.
3. Sub-gaussian distributions

Theorem 1 (Sub-gaussian properties)

For a random variable X, the following properties are equivalent.

- **Tail:** $\mathbb{P}\{|X| \geq t\} \leq 2 \exp(-t^2/K_1^2)$ for all $t \geq 0$.
- **Moment:** $\|X\|_p := (\mathbb{E}|X|^p)^{1/p} \leq K_2 \sqrt{p}$ for all $p \geq 1$.
- **MGF of square:** $\mathbb{E}\exp(X^2/K_3^2) \leq 2$.

Moreover, if $\mathbb{E}X = 0$ then these properties are also equivalent to the following one:

- **MGF:** $\mathbb{E}\exp(\lambda X) \leq \exp(\lambda^2 K_4^2)$ for all $\lambda \in \mathbb{R}$.

Remark. The parameters $K_i > 0$ appearing in these properties can be different. However, they may differ from each other by at most an absolute constant factor. This means that there exists an absolute constant C such that property 1 implies property 2 with parameter $K_2 \leq CK_1$, and similarly for every other pair or properties.
Definition 2
Random variables that satisfy one of the first three properties (and thus all of them) in Theorem 1 are called sub-gaussian.

- The best K_3 is called the sub-gaussian norm of X, and is usually denoted $\|X\|_{\psi_2}$, that is

$$\|X\|_{\psi_2} := \inf\{t > 0 : \mathbb{E}\exp(X^2/t^2) \leq 2\}.$$

- Sub-gaussian random variable examples.
 (i) Normal random variables $X \sim \mathcal{N}(\mu, \sigma^2)$.
 (ii) Bernoulli random variable $X = 0, 1$ with equal probabilities.
 (iii) More generally, any bounded random variable X.

- Not sub-gaussian random variable examples.
 Poisson, exponential, Pareto and Cauchy distributions.
Theorem 3 (Sums of sub-gaussians)

Let X_1, \ldots, X_N be independent, mean zero, sub-gaussian random variables. Then $\sum_{i=1}^{N} X_i$ is sub-gaussian, and

$$\left\| \sum_{i=1}^{N} X_i \right\|_{\psi_2}^2 \leq C \sum_{i=1}^{N} \|X_i\|_{\psi_2}^2,$$

where C is an absolute constant.

Proof. Let us bound the MGF of the sum for any $\lambda \in \mathbb{R}$:

$$\mathbb{E} \exp \left(\lambda \sum_{i=1}^{N} X_i \right) = \prod_{i=1}^{N} \mathbb{E} \exp(\lambda X_i) \quad \text{(using independence)}$$

$$\leq \prod_{i=1}^{N} \exp(C \lambda^2 \|X_i\|_{\psi_2}^2) \quad \text{(by last property in Theorem 1)}$$

$$= \exp(\lambda^2 K^2) \quad \text{where } K^2 := C \sum_{i=1}^{N} \|X_i\|_{\psi_2}^2. \quad \Box$$
3.1. Hoeffding’s inequality

- We rewrite Theorem 3 as a concentration inequality by using the first property in Theorem 1.

Theorem 4 (Hoeffding’s inequality)

Let X_1, \ldots, X_N be independent, mean zero, sub-gaussian random variables. Then, for every $t \geq 0$ we have

$$
P \left\{ \left| \sum_{i=1}^{N} X_i \right| \geq t \right\} \leq 2 \exp \left(- \frac{ct^2}{\sum_{i=1}^{N} \|X_i\|_{\psi_2}^2} \right).$$

Remark 5

Hoeffding’s inequality controls how far and with what probability a sum of independent random variables can deviate from its mean, which is zero.
4. Sub-exponential distributions

- A square X^2 of a normal random variable $X \sim \mathcal{N}(0,1)$ is not sub-gaussian.

Theorem 6 (Sub-exponential properties)

For a random variable X, the following properties are equivalent.

- **Tail:** $\mathbb{P}\{|X| \geq t\} \leq 2 \exp(-t/K_1)$ for all $t \geq 0$.
- **Moment:** $\|X\|_p := (\mathbb{E}|X|^p)^{1/p} \leq pK_2$ for all $p \geq 1$.
- **MGF of square:** $\mathbb{E}\exp(|X|/K_3) \leq 2$.

Moreover, if $\mathbb{E}X = 0$ then these properties imply the following one:

- **MGF:** $\mathbb{E}\exp(\lambda X) \leq \exp(\lambda^2 K_4^2)$ for $|\lambda| \leq 1/K_4$.

Definition 7

Random variables that satisfy one of the first three properties (and thus all of them) in Theorem 6 are called *sub-exponential*.
• The best K_3 is called the sub-exponential norm of X, and is usually denoted $\|X\|_{\psi_1}$, that is

$$\|X\|_{\psi_1} := \inf\{t > 0 : \mathbb{E}\exp(|X|/t) \leq 2\}.$$

• All squares of sub-gaussian random variables are sub-exponential random variables. (Conversely?) We have

$$\|X^2\|_{\psi_1} = \|X\|_{\psi_2}^2.$$

4.1 Bernstein’s inequality

Theorem 8 (Bernstein’s inequality)

Let X_1, \ldots, X_N be independent, mean zero, sub-exponential random variables. Then, for every $t \geq 0$ we have

$$\mathbb{P}\left\{ \left| \sum_{i=1}^{N} X_i \right| \geq t \right\} \leq 2\exp\left[-c \min\left(\frac{t^2}{\sum_{i=1}^{N} \|X_i\|_{\psi_1}^2}, \frac{t}{\max_i \|X_i\|_{\psi_1}} \right) \right].$$
Proof. Choose $\lambda \geq 0$ and use Markov’s inequality to get ($S = \sum_{i=1}^{N} X_i$)

$$\mathbb{P}\{S \geq t\} = \mathbb{P}\{\exp(\lambda S) \geq \exp(\lambda t)\} \leq \exp(-\lambda t) \mathbb{E} \exp(\lambda S).$$

Then by independence, we have

$$\mathbb{P}\{S \geq t\} \leq \exp(-\lambda t) \prod_{i=1}^{N} \mathbb{E} \exp(\lambda X_i).$$

If we choose λ small enough so that $0 < \lambda \leq \frac{c}{\max_i \|X_i\|_{\psi_1}}$, then by the last property in Theorem 6 we have

$$\mathbb{E} \exp(\lambda X_i) \leq \exp\left(C\lambda^2 \|X_i\|_{\psi_1}^2\right).$$

Hence,

$$\mathbb{P}\{S \geq t\} \leq \exp\left(-\lambda t + C\lambda^2 \sigma^2\right), \quad \sigma^2 = \sum_{i=1}^{N} \|X_i\|_{\psi_1}^2.$$

The remaining part is left as an exercise. \qed
Why does Bernstein’s inequality have a mixture of two tails?
(i) The sub-exponential tail should of course be there. Indeed, even if the entire sum consisted of a single term X_i, the best bound we could hope for would be of the form $\exp(-ct/\|X_i\|_{\psi_1})$.
(ii) The sub-gaussian term could be explained by the central limit theorem, which states that the sum should becomes approximately normal as the number of terms N increases to infinity.

Remark 9 (Bernstein’s inequality for bounded random variables)

Suppose further the random variables X_i are uniformly bounded, which is a stronger assumption than being sub-gaussian. If $K > 0$ is such that $|X_i| \leq K$ almost surely for all i, then, for every $t \geq 0$, we have

$$
\mathbb{P}\left\{ \left| \sum_{i=1}^{N} X_i \right| \geq t \right\} \leq 2 \exp\left(-\frac{t^2}{\sigma^2 + CKt} \right),
$$

where $\sigma^2 = \sum_{i=1}^{N} \mathbb{E}X_i^2$ is the variance of the sum.
• Note that $\sigma^2 + CKt \leq 2\max(\sigma^2, CKt)$. So we can state the probability bound as

$$2\exp\left[-c\min\left(\frac{t^2}{\sigma^2}, \frac{t}{K}\right)\right].$$

Just as before, here we also have a mixture of two tails, sub-gaussian and sub-exponential. The sub-gaussian tail is a bit *sharper* than in Theorem 8, since it depends on the variances rather than sub-gaussian norms of X_i. The sub-exponential tail, on the other hand, is *weaker*, since it depends on the sup-norms rather than the sub-exponential norms of X_i.

• More on concentration.
5. Sub-gaussian random vectors

- **Definition.** Consider a random vector \mathbf{X} taking values in \mathbb{R}^n. We call \mathbf{X} a sub-gaussian random vector if all one-dimensional marginals of \mathbf{X}, i.e., the random variables $\langle \mathbf{X}, \mathbf{x} \rangle$ for all $\mathbf{x} \in \mathbb{R}^n$, are sub-gaussian.

- The sub-gaussian norm of \mathbf{X} is defined as

 $$\| \mathbf{X} \|_{\psi_2} := \sup_{\mathbf{x} \in \mathbb{R}^n, \| \mathbf{x} \|_2 = 1} \| \langle \mathbf{X}, \mathbf{x} \rangle \|_{\psi_2}.$$

- **Sub-gaussian random vector examples**

 (i) The standard normal distribution $\mathcal{N}(\mathbf{0}, \mathbf{I}_n)$ (why?)

 (ii) The uniform distribution on the centered Euclidean sphere of radius \sqrt{n}

 (iii) The uniform distribution on the cube $\{-1, 1\}^n$

 (iv) A random vector $\mathbf{X} = (X_1, \cdots, X_n)$ with independent and sub-gaussian coordinates is sub-gaussian, $\| \mathbf{X} \|_{\psi_2} \leq C \max_i \| X_i \|_{\psi_2}$.
6. Johnson-Lindenstrauss Lemma

- Concentration inequalities like Hoeffding’s and Bernstein’s are successfully used in the analysis of algorithms.

- Let us give one example for the problem of dimension reduction. Suppose we have some data that is represented as a set of \(N \) points in \(\mathbb{R}^n \). We would like to compress the data by representing it in a lower dimensional space \(\mathbb{R}^m \) instead of \(\mathbb{R}^n \) with \(m \ll n \). By how much can we reduce the dimension without losing the important features of the data?

- The basic result in this direction is the Johnson-Lindenstrauss Lemma. It states that a remarkably simple dimension reduction method works - a random linear map from \(\mathbb{R}^n \) to \(\mathbb{R}^m \) with \(m \sim \log N \). The logarithmic function grows very slowly, so we can usually reduce the dimension dramatically.

- What exactly is a random linear map? We consider an \(m \times n \) matrix \(A \) whose rows are independent, mean zero, isotropic and sub-gaussian random vectors in \(\mathbb{R}^n \).
Theorem 10 (Johnson-Lindenstrauss Lemma)

Let \mathcal{X} be a set of N points in \mathbb{R}^n and $\varepsilon \in (0, 1)$. Consider an $m \times n$ matrix A whose rows are independent, mean zero, isotropic and sub-gaussian random vectors X_i in \mathbb{R}^n. Rescale A by defining the “Gaussian random projection”

$$P := A/\sqrt{m}.$$

Assume that

$$m \geq C\varepsilon^{-2} \log N,$$

where C is an appropriately large constant that depends only on the sub-gaussian norms of the vectors X_i. Then, with high probability (say, 0.99), the map P preserves the distances between all points in \mathcal{X} with error ε, that is for all $x, y \in \mathcal{X}$,

$$(1 - \varepsilon)\|x - y\|_2 \leq \|Px - Py\|_2 \leq (1 + \varepsilon)\|x - y\|_2.$$
Proof. By linearity of P, $1 - \varepsilon \geq (1 - \varepsilon)^2$, and $1 + \varepsilon \leq (1 + \varepsilon)^2$, it is sufficient to prove that

$$1 - \varepsilon \leq \|Pz\|_2^2 \leq 1 + \varepsilon \quad \text{for all } z \in \mathcal{T}$$

where

$$\mathcal{T} := \left\{ \frac{x - y}{\|x - y\|_2} : x, y \in \mathcal{X} \text{ and } x \neq y \right\}.$$

By $Pz = Az/\sqrt{m}$, it is enough to show that

$$\left| \frac{1}{m} \sum_{i=1}^{m} \langle X_i, z \rangle^2 - 1 \right| \leq \varepsilon \quad \text{for all } z \in \mathcal{T}.$$

We can prove this inequality by combining concentration and a union bound.
In order to use concentration, we first fix $\mathbf{z} \in \mathcal{T}$. By assumption, the random variables $\langle \mathbf{X}_i, \mathbf{z} \rangle^2 - 1$ are independent; they have zero mean (why? Exercise), and they are sub-exponential (why? Exercise). Then Bernstein’s inequality gives (why? Exercise)

$$
\mathbb{P} \left\{ \left| \frac{1}{m} \sum_{i=1}^{m} \langle \mathbf{X}_i, \mathbf{z} \rangle^2 - 1 \right| > \varepsilon \right\} \leq 2 \exp \left(-c\varepsilon^2 m \right).
$$

Finally, we can unfix \mathbf{z} by taking a union bound over all possible $\mathbf{z} \in \mathcal{T}$:

$$
\mathbb{P} \left\{ \max_{\mathbf{z} \in \mathcal{T}} \left| \frac{1}{m} \sum_{i=1}^{m} \langle \mathbf{X}_i, \mathbf{z} \rangle^2 - 1 \right| > \varepsilon \right\} \leq \sum_{\mathbf{z} \in \mathcal{T}} \mathbb{P} \left\{ \left| \frac{1}{m} \sum_{i=1}^{m} \langle \mathbf{X}_i, \mathbf{z} \rangle^2 - 1 \right| > \varepsilon \right\} \leq |\mathcal{T}| \cdot 2 \exp \left(-c\varepsilon^2 m \right).
$$

By definition of \mathcal{T}, we have $|\mathcal{T}| \leq N^2$. So, if we choose $m \geq C\varepsilon^{-2} \log N$ with appropriately large constant C, we can make

$$
|\mathcal{T}| \cdot 2 \exp \left(-c\varepsilon^2 m \right) \leq 0.01.
$$

The proof is complete.