The Geometric Analysis Seminar at School of Mathematics Sciences, Xiamen University
2017-2018

The geometric analysis seminar will take place on each Tuesday or Friday, from 14:30 to 15:30, from Sept. 19th and end at January 16th for the fall semester, and start from Febuary 27th and end at July 27th for the spring semester.


Schedules Rooms Topics
Tue 09/12 2:00 PM 数理楼661 Organizational meeting.
Tue 09/19 2:30 PM 数理楼661 Siyuan Ma (Albert Einstein Institute) "On Maxwell field and linearized gravity in Kerr spacetime"

Abstract: After the publication of Einstein's theory of General Relativity in 1915, many predictions have been confirmed in the latest one century, culminating at the recent observations of gravitational waves emitted during the merging of binary black holes by LIGO and VIRGO collaborations. Black holes are one of the fundamental predictions, and the one of most interests is the Kerr black hole spacetimes. The metric of a Kerr spacetime describes a rotating, stationary, axisymmetric, asymptotically flat solution to vacuum Einstein equations. One of the most important open problems in mathematical General Relativity is to address the fully nonlinear stability conjecture of Kerr solutions. In this talk, I will present recent results in obtaining energy estimates for both Maxwell field and linearized gravity on Kerr backgrounds, which will advance the field towards this conjecture.
Tue 09/19 3:40 PM 数理楼661 Chao Liu (Monash University) "Cosmological Newtonian limits on large scales"

Abstract: In this talk, I will rigorously answer one basic question in cosmological simulation: on what space and time scales Newtonian cosmological simulations can be trusted to approximate relativistic cosmologies? We resolve this question under a small initial data condition.
Tue 09/26 2:30 PM 数理楼661 Guofang Wang (Freiburg University) "Local Lagrangian embeddings and Hessian surfaces"

Abstract: We will talk about Local Lagrangian embeddings and Hessian surfaces. This is a joint work with Qing Han.
Tue 10/17 2:30 PM 数理楼661 Bo Yang (Xiamen University) "Kahler-Ricci flow on noncompact manifolds (after Huang-Tam and Lee-Tam)"

Abstract: This talk is purely expository. We explain recent works on Kahler-Ricci flow on complete noncompact Kahler manifolds with non collapsed volume and nonnegative bisectional curvature.
Tue 10/24 2:30 PM 数理楼661 Fei He (Xiamen University) "Existence of Ricci flow on noncompact manifolds"

Abstract: This will be a continuation of Bo Yang's talk from last week. We will discuss the short-time existence of Ricci flow on noncompact manifolds with a focus on the recent work of Lee and Tam.
Fri 11/03 2:30 PM 实验楼105 Xi Zhang (University of Science and Technology of China) "Canonical metrics and The Hermitian-Yang-Mills flow on reflexive sheaves"

Abstract: In this talk, we will introduce our recent work on the existence of canonical metrics, Bogomolov type inequalities and the limiting behavior of the Hermitian-Yang-Mills flow on reflexive sheaves. These work are joint with JiaYu Li, YanCi Nie and ChuanJing Zhang.
Fri 11/10 2:30 PM 实验楼105 Bin Zhou (Peking University) "K-energy on polarized compactifications of Lie groups"

Abstract: In this paper, we study Mabuchi’s K-energy on a compactification M of a reductive Lie group G, which is a complexification of its maximal compact subgroup K. We give a criterion for the properness of K-energy on the space of K × K-invariant Kahler potentials. In particular, it turns to give an alternative proof of Delcroix’s theorem for the existence of Kahler-Einstein metrics in case of Fano manifolds M . We also study the existence of minimizers of K-energy for general Kahler classes of M.
Fri 11/10 3:40 PM 实验楼105 Weiming Shen (BICMR, Peking University) "On The Negativity of Ricci Curvatures of Complete Conformal Metrics"

Abstract: A version of the singular Yamabe problem in bounded domains yields complete conformal metrics with negative constant scalar curvatures. In this talk, I will disscuss whether these metrics have negative Ricci curvatures. We will provide a general construction of domains in compact manifolds and demonstrate that the negativity of Ricci curvatures does not hold if the boundary is close to certain sets of low dimension. The expansion of the Green's function and the positive mass theorem play essential roles in certain cases. On the other hand, we prove that these metrics indeed have negative Ricci curvatures in bounded convex domains in the Euclidean space.
Fri 11/17 3:30 PM 实验楼105 Xiao Zhang (AMSS, Beijing) " The positive energy theorem for asymptotically hyperbolic manifolds"

Abstract: In general relativity, asymptotically hyperbolic manifolds serve as the initial data sets in two cases: (i) asymptotically null infinity for asymptotically flat spacetimes where the cosmological constant is zero; (ii) asymptotically spatial infinity for asymptotically AdS spacetimes where the cosmological constant is negative. The difference is that, in case (i), the second fundamental forms are asymptotic to hyperbolic metrics while in case (ii), the second fundamental forms are asymptotic to zero. We will discuss the positive energy theorem in the two cases. The talk is based on the early work of the speaker as well as the joint work with Wang Yuahua and Xie Naqing.
Fri 11/24 2:30 PM 实验楼105 Zhizhang Wang (Fudan University) "The curvature estimates for convex solutions of some fully nonlinear Hessian type equations"

Abstract: The curvature estimates of quotient curvature equation do not always exist even for convex setting. Thus it is natural question to find other type of elliptic equations possessing curvature estimates. In this paper, we discuss the existence of curvature estimate for fully nonlinear elliptic equations defined by symmetric polynomials, mainly, the linear combination of elementary symmetric polynomials. This is a joint work with Chunhe Li and Changyu Ren.
Fri 11/24 3:40 PM 实验楼105 Naqing Xie (Fudan University) "Toroidal marginally outer trapped surfaces in the closed Friedmann-Lemaitre-Robertson-Walker universe"

Abstract: We explicitly construct toroidal MOTS in the closed FLRW universe. This construction is used to assess the quality of certain isoperimetric inequalities recently proved in axial symmetry. We also show that these constructed toroidal MOTS are unstable. This talk is based on a joint work with Patryk Mach.
Fri 12/01 2:30 PM 实验楼105 Frederick Tsz-Ho Fong (Hong Kong University of Science and Technology) "Rigidity of Self-Expanders of Inverse Curvature Flows"

Abstract: In this talk, the speaker will investigate a large class of curvature flows by degree -1 homogeneous functions of principal curvatures in Euclidean spaces. This class curvature flows include the well-known inverse mean curvature flow and many others in the current literature. Self-expanding solutions to these curvature flows are solutions that expanding homothetically without changing their shapes. We will talk about uniqueness, rigidity, and constructions of both compact and non-compact self-expanding solutions to these flows. Part of these are joint work with G. Drugan, H. Lee; P. McGrath; and A. Chow, K. Chow.
Fri 12/08 3:30 PM 实验楼105 Hui Ma (Tsinghua University) "Uniqueness of closed self-similar solutions to $\sigma_k^{\alpha}$-curvature flow"

Abstract: In this talk we will show the uniqueness of closed self-similar solutions to $\sigma_k^{\alpha}$-curvature flow. It is based on the joint work with Shanze Gao and Haizhong Li.
Fri 12/29 2:30 PM 实验楼105 Yunhui Wu (Tsinghua University) "The Weil-Petersson geometry of the moduli of curves for large genus"

Abstract: We study the systole function along Weil-Petersson geodesics. We show that the square root of the systole function is uniform Lipschitz on the Teichmuller space endowed with the Weil-Petersson metric. As an application, we study the growth of the Weil-Petersson inradius of the moduli space of Riemann surfaces of genus $g$ with $n$ punctures as a function of $g$ and $n$. We show that the Weil-Petersson inradius is comparable to $\sqrt{\ln{g}}$ with respect to $g$, and is comparable to $1$ with respect to $n$.


Last modified: Nov 2017 by the geometric analysis group at XMU Math.